If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)(2x+5)=133
We move all terms to the left:
(x)(2x+5)-(133)=0
We multiply parentheses
2x^2+5x-133=0
a = 2; b = 5; c = -133;
Δ = b2-4ac
Δ = 52-4·2·(-133)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-33}{2*2}=\frac{-38}{4} =-9+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+33}{2*2}=\frac{28}{4} =7 $
| (x)(5x)=228 | | 8n=2.5 | | 9x-5=66 | | 9x-5=33 | | 240=13u+19 | | 4x+6=5x+2=180 | | 5.2x²-4.3x-6.7=0 | | 6x-7=5x+16=180 | | 0+110000-x+22000=104000 | | 9x+5=10x-2=180 | | 4x3+2=30 | | 390=35t+40 | | 42+48=4x+24+42−8x | | 42+48=4r+24+42−8r | | 5x^{3}+25=-15 | | 4x2+48=4x+24+4x2−8x | | 6.5=35t+40 | | 65=35t+40 | | 5x-2+8x+7=252 | | 4y+12(2)=12 | | 4y+12(1)=12 | | 19.62=5t^2 | | 4y+12(0)=12 | | 4y+12(-2)=12 | | 8x+7=252 | | 1.5=0.4t+1.2 | | 4y+12(-1)=12 | | 8y+48(1)=48 | | n−5=5n−1 | | |a/6=3=14| | | 8y+48(0)=48 | | 8y+48(-1)=48 |