If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)(-x-6)=(-6)(x+3)
We move all terms to the left:
(x)(-x-6)-((-6)(x+3))=0
We add all the numbers together, and all the variables
x(-1x-6)-((-6)(x+3))=0
We multiply parentheses
-1x^2-6x-((-6)(x+3))=0
We multiply parentheses ..
-1x^2-6x-((-6x-18))=0
We calculate terms in parentheses: -((-6x-18)), so:We get rid of parentheses
(-6x-18)
We get rid of parentheses
-6x-18
Back to the equation:
-(-6x-18)
-1x^2-6x+6x+18=0
We add all the numbers together, and all the variables
-1x^2+18=0
a = -1; b = 0; c = +18;
Δ = b2-4ac
Δ = 02-4·(-1)·18
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*-1}=\frac{0-6\sqrt{2}}{-2} =-\frac{6\sqrt{2}}{-2} =-\frac{3\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*-1}=\frac{0+6\sqrt{2}}{-2} =\frac{6\sqrt{2}}{-2} =\frac{3\sqrt{2}}{-1} $
| (-x-5)º+99+37=180 | | x2+8x-15=8x+1 | | 2x+2x-2=24 | | y=34000(1+0.025)^5 | | 24-b-b-b-b=0 | | 8x-14+6=2x-3x-7 | | c=2+73 | | 8+4x-1-3x=20 | | 12^(x-3)=60 | | x–3=5+7 | | 8+4x-3x+1=20 | | 12^(x−3)=60 | | ½t=12 | | 25-x-x-x-x-x-x=0 | | s=5+15 | | 3r.8=1.4 | | d=63+1 | | x-1,4=19.8 | | 7n-12=46 | | 3(j+5)=12 | | 3x^2−x=2 | | p=13+86 | | 6=r24 | | 4q-1=43 | | 13u=351 | | 5m+8-2m=3+m-1 | | d=5+88 | | 71=11x+5 | | 4c=688 | | 9n+7n-13+2n=29 | | 3/4=y/2 | | 21=r/7 |