If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying
(x(1 + i))(x(1 + -1i)) = 0
((1 * x + i * x))(x(1 + -1i)) = 0
Reorder the terms:
((ix + 1x))(x(1 + -1i)) = 0
((ix + 1x))(x(1 + -1i)) = 0
(ix + 1x)((1 * x + -1i * x)) = 0
Reorder the terms:
(ix + 1x)((-1ix + 1x)) = 0
(ix + 1x)((-1ix + 1x)) = 0
Multiply (ix + 1x) * (-1ix + 1x)
(ix(-1ix + 1x) + 1x * (-1ix + 1x)) = 0
((-1ix * ix + 1x * ix) + 1x * (-1ix + 1x)) = 0
Reorder the terms:
((1ix2 + -1i2x2) + 1x * (-1ix + 1x)) = 0
((1ix2 + -1i2x2) + 1x * (-1ix + 1x)) = 0
(1ix2 + -1i2x2 + (-1ix * 1x + 1x * 1x)) = 0
(1ix2 + -1i2x2 + (-1ix2 + 1x2)) = 0
Reorder the terms:
(1ix2 + -1ix2 + -1i2x2 + 1x2) = 0
Combine like terms: 1ix2 + -1ix2 = 0
(0 + -1i2x2 + 1x2) = 0
(-1i2x2 + 1x2) = 0
Solving
-1i2x2 + 1x2 = 0
Solving for variable 'i'.
Move all terms containing i to the left, all other terms to the right.
Add '-1x2' to each side of the equation.
-1i2x2 + 1x2 + -1x2 = 0 + -1x2
Combine like terms: 1x2 + -1x2 = 0
-1i2x2 + 0 = 0 + -1x2
-1i2x2 = 0 + -1x2
Remove the zero:
-1i2x2 = -1x2
Divide each side by '-1x2'.
i2 = 1
Simplifying
i2 = 1
Take the square root of each side:
i = {-1, 1}
| 5u-9=-9 | | 21+3a=7-4a | | (x-1)(x(1+i))(x(1-i))=0 | | -17d-17=0 | | -4n=2(5-n) | | .4(x+2)-.6(x+2)=.2-.4 | | 11x-2+x-4=-4(4x-10)-3(3+3x) | | x+2=-x+20-4 | | 3x^3-6x+4=0 | | 9x^4-49x^2=0 | | 5c+(2c-1)+c= | | 2X^2+2X+98=0 | | -7(11+4n)+2=-7(1+4n) | | 2(-3n-1)=-8n | | 9C=5F-1604 | | 2(9v+10)-9v=-2(1-4v) | | 9(4d+4)-8=4(8d+20) | | 8(-4z+3)=-8z | | X+15=8x | | -9h=6+6(-4h+19) | | -9h=6+6 | | 13+5(7v+15)=20v-14-18 | | x^10+10x=0 | | 3x+3+1+2x=2(2x+2)+x | | 5u-18=19-4(2u-20) | | 5x+13y=500 | | 3x+13y=500 | | 1x+43=86 | | a^2+2B+98=0 | | -8(-3s-5)=-3(-15-10)-11s | | 10(b+11)=-7b+3(10+11b) | | -0.8=-0.5u+0.3u |