(w-18)(w+2)=1152

Simple and best practice solution for (w-18)(w+2)=1152 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (w-18)(w+2)=1152 equation:



(w-18)(w+2)=1152
We move all terms to the left:
(w-18)(w+2)-(1152)=0
We multiply parentheses ..
(+w^2+2w-18w-36)-1152=0
We get rid of parentheses
w^2+2w-18w-36-1152=0
We add all the numbers together, and all the variables
w^2-16w-1188=0
a = 1; b = -16; c = -1188;
Δ = b2-4ac
Δ = -162-4·1·(-1188)
Δ = 5008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5008}=\sqrt{16*313}=\sqrt{16}*\sqrt{313}=4\sqrt{313}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{313}}{2*1}=\frac{16-4\sqrt{313}}{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{313}}{2*1}=\frac{16+4\sqrt{313}}{2} $

See similar equations:

| 135+5x+1+6x=180 | | 5-4x+4x=5 | | 7+10x-6=3x+9 | | 1152=x(2x^2-32x-72) | | 1152=w(2w^2-32w-72) | | 4^(1-7x)=3^x | | 90+x+38+x+68=180 | | x+53+90+130=180 | | x+53+90=130 | | 85+x+52+x+57=180 | | x-9.3=7.4 | | 41+59+x+x+88=180 | | 70+6x+8+9x-3=180 | | 45+7x+5+5x+10=180 | | 7x-64=6x-36 | | 67+64+4x+1=180 | | 2n+12=7n-18 | | x*2.5=12 | | 2^5x-^5=16 | | -3x+-12=-6x-6 | | -4x=-5x+-9 | | 10b2+32b=-22 | | y=48+(2) | | (x-11)+(x+10)+31+(2x-42)=360 | | m-14=17+38 | | 64-4x=58-2x | | 3x+62=89-6x | | (20x+11)=(9x-5) | | 6x-18=280 | | 12x-+12=180 | | 26.4=6.6b | | 7a+4=3a+22 |

Equations solver categories