(w+1)(3w+2)=62

Simple and best practice solution for (w+1)(3w+2)=62 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (w+1)(3w+2)=62 equation:


Simplifying
(w + 1)(3w + 2) = 62

Reorder the terms:
(1 + w)(3w + 2) = 62

Reorder the terms:
(1 + w)(2 + 3w) = 62

Multiply (1 + w) * (2 + 3w)
(1(2 + 3w) + w(2 + 3w)) = 62
((2 * 1 + 3w * 1) + w(2 + 3w)) = 62
((2 + 3w) + w(2 + 3w)) = 62
(2 + 3w + (2 * w + 3w * w)) = 62
(2 + 3w + (2w + 3w2)) = 62

Combine like terms: 3w + 2w = 5w
(2 + 5w + 3w2) = 62

Solving
2 + 5w + 3w2 = 62

Solving for variable 'w'.

Reorder the terms:
2 + -62 + 5w + 3w2 = 62 + -62

Combine like terms: 2 + -62 = -60
-60 + 5w + 3w2 = 62 + -62

Combine like terms: 62 + -62 = 0
-60 + 5w + 3w2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-20 + 1.666666667w + w2 = 0

Move the constant term to the right:

Add '20' to each side of the equation.
-20 + 1.666666667w + 20 + w2 = 0 + 20

Reorder the terms:
-20 + 20 + 1.666666667w + w2 = 0 + 20

Combine like terms: -20 + 20 = 0
0 + 1.666666667w + w2 = 0 + 20
1.666666667w + w2 = 0 + 20

Combine like terms: 0 + 20 = 20
1.666666667w + w2 = 20

The w term is 1.666666667w.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667w + 0.6944444447 + w2 = 20 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667w + w2 = 20 + 0.6944444447

Combine like terms: 20 + 0.6944444447 = 20.6944444447
0.6944444447 + 1.666666667w + w2 = 20.6944444447

Factor a perfect square on the left side:
(w + 0.8333333335)(w + 0.8333333335) = 20.6944444447

Calculate the square root of the right side: 4.549114688

Break this problem into two subproblems by setting 
(w + 0.8333333335) equal to 4.549114688 and -4.549114688.

Subproblem 1

w + 0.8333333335 = 4.549114688 Simplifying w + 0.8333333335 = 4.549114688 Reorder the terms: 0.8333333335 + w = 4.549114688 Solving 0.8333333335 + w = 4.549114688 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + w = 4.549114688 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + w = 4.549114688 + -0.8333333335 w = 4.549114688 + -0.8333333335 Combine like terms: 4.549114688 + -0.8333333335 = 3.7157813545 w = 3.7157813545 Simplifying w = 3.7157813545

Subproblem 2

w + 0.8333333335 = -4.549114688 Simplifying w + 0.8333333335 = -4.549114688 Reorder the terms: 0.8333333335 + w = -4.549114688 Solving 0.8333333335 + w = -4.549114688 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + w = -4.549114688 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + w = -4.549114688 + -0.8333333335 w = -4.549114688 + -0.8333333335 Combine like terms: -4.549114688 + -0.8333333335 = -5.3824480215 w = -5.3824480215 Simplifying w = -5.3824480215

Solution

The solution to the problem is based on the solutions from the subproblems. w = {3.7157813545, -5.3824480215}

See similar equations:

| 4x-7=2.1 | | 3*z+5*i=2-z*i | | 21=4x+8 | | -6x-3y=-24 | | 8m+5=31 | | 3t-5+2t-7=4t+6-7t-9 | | e^4-x=7e^2x | | 8x-2x+60=8x+34 | | 10x-3=127 | | 4x-8=3x-15 | | xy+ab=c | | -11=c+4 | | n/8=-1 | | x+4x+6+102=180 | | 4r+11=34 | | ln(x+5)-ln(2x-3)=0 | | 7y-4=10y+15 | | 4(n-3)=2n-7 | | -13=-6+v | | 13e-2=9e+2 | | 5cosx^2+-3=0 | | 45=x^15 | | 4y-15=y+20 | | 2m^2xt^6/m^4xt^2 | | x^3-48x-88=0 | | 5cos^2-3=0 | | 6=h | | 6d+15+5d=180 | | 5a+3=3a+17 | | 82=15-x | | 6c-9=4c-5 | | 16.05+.07x+.21=16.80-.12 |

Equations solver categories