If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(t-2)(t+2)=0
We use the square of the difference formula
t^2-4=0
a = 1; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·1·(-4)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*1}=\frac{-4}{2} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*1}=\frac{4}{2} =2 $
| 48x+10=18x-8 | | 38x+10=18x-8 | | 4x+16-16=-4 | | 41.2^x-12.6^x-1=0 | | 189=125-x | | 2^(2x+1)-129(2^x)+64=0 | | 6x-9-6(1+x)=x-9 | | (3p)(-3)=36 | | 8x-16=x+19 | | 10y-11=4y+7 | | 10x-32=3x+31 | | 8x-21=2x+27 | | 19-5x=x-23 | | 4y+20=22 | | 18x/1000=1000 | | 2a-1/3=1/5-a | | 18+9t=4 | | 15/4+7x=9 | | 1.4=y/1.5 | | n*n*n=281474976710656 | | n*n=281474976710656 | | n=281474976710656 | | 5^2x+4(5^x-1)-125=0 | | 5^2x+4(5^x-4)-125=0 | | 2y-10-3=0 | | 5^2x+4(5x-1)-125=0 | | 4^2x+21(4^x)+80=0 | | 4^2x+21(4x)+80=0 | | 9y+6y+y=0 | | 2x6-9x5+10x4-3x3+10x2-9x+2=0 | | 3x^+50=5x^ | | 5w+8=3w=14 |