(t)=-8t2+32t+40

Simple and best practice solution for (t)=-8t2+32t+40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (t)=-8t2+32t+40 equation:



(t)=-8t^2+32t+40
We move all terms to the left:
(t)-(-8t^2+32t+40)=0
We get rid of parentheses
8t^2-32t+t-40=0
We add all the numbers together, and all the variables
8t^2-31t-40=0
a = 8; b = -31; c = -40;
Δ = b2-4ac
Δ = -312-4·8·(-40)
Δ = 2241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2241}=\sqrt{9*249}=\sqrt{9}*\sqrt{249}=3\sqrt{249}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-3\sqrt{249}}{2*8}=\frac{31-3\sqrt{249}}{16} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+3\sqrt{249}}{2*8}=\frac{31+3\sqrt{249}}{16} $

See similar equations:

| 6x=34.50 | | 5-2-x-15=27 | | 0.6+2n=0.1+3n | | U=-0.002x^2+50x-180000 | | 55x+80+45=180 | | 5-6a=20-5a | | 5x-11+4x-2+3x+3=360 | | 4(m+5)=92 | | 32=v^2/2 | | F(x)=10(0.85)^10 | | 1/4-10n=50 | | 80+42+x=180 | | 5x-11+4x-2+3x+3=180 | | 3x-5=12+4x*2 | | F(x)=1(0.85)^10 | | f(4)=4(4+3)/2 | | 5x2–36x+36=0 | | 29=y/4-16 | | 30z=-48z-78 | | 18x=80 | | r-25=180 | | x+49+x+61=84 | | 18-x=80 | | 2x-3=5x=8 | | 4^10x=6 | | 3x-5=12+4x|2 | | F(n)=n(n+3)/2 | | 27=1/3h | | 3n+2n+10–nn=1/2 | | 4(3×-y=11)= | | L20x=3 | | 11•r=55 |

Equations solver categories