If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(t)=-16t^2+16t+480
We move all terms to the left:
(t)-(-16t^2+16t+480)=0
We get rid of parentheses
16t^2-16t+t-480=0
We add all the numbers together, and all the variables
16t^2-15t-480=0
a = 16; b = -15; c = -480;
Δ = b2-4ac
Δ = -152-4·16·(-480)
Δ = 30945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{30945}}{2*16}=\frac{15-\sqrt{30945}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{30945}}{2*16}=\frac{15+\sqrt{30945}}{32} $
| 7x+3+3x+2=180 | | 6(2x-3)=114 | | 75=11×-7+4x+2 | | 8x+(7x+5)+10x=180 | | 17+5(x-1)=37 | | 2(3)(4x)-2(3)5x)-(6)=0 | | x^2+2x-152=0 | | 9r+5=18 | | -5(6x+8)=-400 | | 15=3-(-n) | | x+14=-27 | | 5y–3y+8=8–5y–14 | | 143=10x+13+7x-6 | | 7(2x–1)=1-8+14x | | w-4+18=26 | | 6r-7=180-55 | | 84-5x=10x+9 | | 4(2k+12)=8(k+4)+12 | | 6(2y-1)2(-2y)=6 | | 4+30n=6+25n | | 6x+4/2=2x+5 | | 4(3x+8)=10–4(x–2) | | 3t-18=4(-3-3/4t3) | | -3+5n=-7+6n | | 15+6x=-33 | | 54-5x=10x+9 | | 4n+30=6n+25 | | 2(-x+2)=-10 | | 100=4^x | | Y-63=3xY | | y+68=133 | | 3n-4=14n=6 |