(t)=(-5t-3)(t-6)

Simple and best practice solution for (t)=(-5t-3)(t-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (t)=(-5t-3)(t-6) equation:



(t)=(-5t-3)(t-6)
We move all terms to the left:
(t)-((-5t-3)(t-6))=0
We multiply parentheses ..
-((-5t^2+30t-3t+18))+t=0
We calculate terms in parentheses: -((-5t^2+30t-3t+18)), so:
(-5t^2+30t-3t+18)
We get rid of parentheses
-5t^2+30t-3t+18
We add all the numbers together, and all the variables
-5t^2+27t+18
Back to the equation:
-(-5t^2+27t+18)
We get rid of parentheses
5t^2-27t+t-18=0
We add all the numbers together, and all the variables
5t^2-26t-18=0
a = 5; b = -26; c = -18;
Δ = b2-4ac
Δ = -262-4·5·(-18)
Δ = 1036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1036}=\sqrt{4*259}=\sqrt{4}*\sqrt{259}=2\sqrt{259}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{259}}{2*5}=\frac{26-2\sqrt{259}}{10} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{259}}{2*5}=\frac{26+2\sqrt{259}}{10} $

See similar equations:

| 30+15+0.69x=35+0.75x | | 2x+20=x+46 | | x(-4)+6x=3x-1+5 | | 3y=-111 | | 2x=31+x | | 12=4+z | | 3x+6+x+3x+6-14=294 | | x-7=4+3x | | 2t+9=t+41 | | 13^6x-6=27 | | b^2+3b=18 | | 82-4x=18x=16 | | 4x2+4x-9=0 | | 5x+5=3x+20 | | 2x-5=17,6 | | 3,5x-1,3=2,2+4,5x | | 5r+7-3r=6r-9 | | 82+4x=18x=-16 | | 8-9n=-127 | | 3/x+2x+2x-30=75 | | X+x+x+1=x+10 | | 15=15w | | (4x-3)²+24x=0 | | 52,800-8,329=x | | -8y-10=6y-3y-12 | | n-(-5)=(-10) | | 5x-27=87 | | 196-W=10x15 | | 2x+7=4x–11 | | 8-9n=127 | | 3.8+10m=8.47 | | 5(4n-4=)=60 |

Equations solver categories