If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(q+5)(5q+10)=0
We multiply parentheses ..
(+5q^2+10q+25q+50)=0
We get rid of parentheses
5q^2+10q+25q+50=0
We add all the numbers together, and all the variables
5q^2+35q+50=0
a = 5; b = 35; c = +50;
Δ = b2-4ac
Δ = 352-4·5·50
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-15}{2*5}=\frac{-50}{10} =-5 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+15}{2*5}=\frac{-20}{10} =-2 $
| 4u^2-6u+6=0 | | -4x+5+2(x+1)=-5x+4 | | -u+198=104 | | 3x+4=160 | | -4x+5+2(x+1=-5x+4 | | Z^(4)+1=i | | Z^4+1=i | | -u+93=187 | | k2+3k–54=0 | | (9y+7)=124 | | 214=97-x | | 30n^2+44n-89=0 | | 5^(2x+1)=36 | | 12c−-6c+-13c=20 | | 3p+2p+p=18 | | 60n^2+88n-178=0 | | 12a-12a+3a-2a=14 | | 7u+72=16u | | 12a−12a+3a−2a=14 | | 5(4x-9)=6(x+2) | | ∆z+∆z+90°=180° | | 9k+5=41 | | 9p-6=120 | | 3^x=92 | | V+13=2(v-7) | | x3-5=9 | | 6x^2-31x+35=2/3 | | 2n=5+9 | | 15g-8g-6g=18 | | 14k+17=1 | | 14w+4w-w-17w+2w=18 | | -16+x/4=-5 |