If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(p2)+p=84
We move all terms to the left:
(p2)+p-(84)=0
We add all the numbers together, and all the variables
p^2+p-84=0
a = 1; b = 1; c = -84;
Δ = b2-4ac
Δ = 12-4·1·(-84)
Δ = 337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{337}}{2*1}=\frac{-1-\sqrt{337}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{337}}{2*1}=\frac{-1+\sqrt{337}}{2} $
| t-28.2=37 | | -2(5x+4)=-10x+-16 | | 9x-20=5x-28 | | -7{-6n+1+3n=-7+3n | | 20=5(w+5) | | -3a+9=36 | | x2+x=84 | | 5+4x=8+10x-6x | | r+13=22 | | 15=7-8v | | 5+4x=8+10-6x | | 7q+3q-6q=16 | | 4x-(2x+2)=12x | | 2x(10.25)+17=90 | | 13+2x-7=5x+5-3x | | 7q=3q-6q=16 | | 9x-2-4x=5x-2 | | 8z+16=80 | | 5/8=q/16 | | 9n-2n-4n+5n=8 | | 11=-p+3 | | 12b+4b-14b+b+b=12 | | -2y+1=1 | | -63+2z=9z | | 17+k=82 | | 13=4+3j | | 3(x−3)=9 | | -150-2x=54+10x | | 5x(10.25)=90 | | 8v-15v+-6v=13 | | -5=6t-7t+4 | | 4(4x+4)+2x+3=−161 |