(p+2)+8p(3p+6)=80

Simple and best practice solution for (p+2)+8p(3p+6)=80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (p+2)+8p(3p+6)=80 equation:


Simplifying
(p + 2) + 8p(3p + 6) = 80

Reorder the terms:
(2 + p) + 8p(3p + 6) = 80

Remove parenthesis around (2 + p)
2 + p + 8p(3p + 6) = 80

Reorder the terms:
2 + p + 8p(6 + 3p) = 80
2 + p + (6 * 8p + 3p * 8p) = 80
2 + p + (48p + 24p2) = 80

Combine like terms: p + 48p = 49p
2 + 49p + 24p2 = 80

Solving
2 + 49p + 24p2 = 80

Solving for variable 'p'.

Reorder the terms:
2 + -80 + 49p + 24p2 = 80 + -80

Combine like terms: 2 + -80 = -78
-78 + 49p + 24p2 = 80 + -80

Combine like terms: 80 + -80 = 0
-78 + 49p + 24p2 = 0

Begin completing the square.  Divide all terms by
24 the coefficient of the squared term: 

Divide each side by '24'.
-3.25 + 2.041666667p + p2 = 0

Move the constant term to the right:

Add '3.25' to each side of the equation.
-3.25 + 2.041666667p + 3.25 + p2 = 0 + 3.25

Reorder the terms:
-3.25 + 3.25 + 2.041666667p + p2 = 0 + 3.25

Combine like terms: -3.25 + 3.25 = 0.00
0.00 + 2.041666667p + p2 = 0 + 3.25
2.041666667p + p2 = 0 + 3.25

Combine like terms: 0 + 3.25 = 3.25
2.041666667p + p2 = 3.25

The p term is 2.041666667p.  Take half its coefficient (1.020833334).
Square it (1.042100696) and add it to both sides.

Add '1.042100696' to each side of the equation.
2.041666667p + 1.042100696 + p2 = 3.25 + 1.042100696

Reorder the terms:
1.042100696 + 2.041666667p + p2 = 3.25 + 1.042100696

Combine like terms: 3.25 + 1.042100696 = 4.292100696
1.042100696 + 2.041666667p + p2 = 4.292100696

Factor a perfect square on the left side:
(p + 1.020833334)(p + 1.020833334) = 4.292100696

Calculate the square root of the right side: 2.071738568

Break this problem into two subproblems by setting 
(p + 1.020833334) equal to 2.071738568 and -2.071738568.

Subproblem 1

p + 1.020833334 = 2.071738568 Simplifying p + 1.020833334 = 2.071738568 Reorder the terms: 1.020833334 + p = 2.071738568 Solving 1.020833334 + p = 2.071738568 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-1.020833334' to each side of the equation. 1.020833334 + -1.020833334 + p = 2.071738568 + -1.020833334 Combine like terms: 1.020833334 + -1.020833334 = 0.000000000 0.000000000 + p = 2.071738568 + -1.020833334 p = 2.071738568 + -1.020833334 Combine like terms: 2.071738568 + -1.020833334 = 1.050905234 p = 1.050905234 Simplifying p = 1.050905234

Subproblem 2

p + 1.020833334 = -2.071738568 Simplifying p + 1.020833334 = -2.071738568 Reorder the terms: 1.020833334 + p = -2.071738568 Solving 1.020833334 + p = -2.071738568 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-1.020833334' to each side of the equation. 1.020833334 + -1.020833334 + p = -2.071738568 + -1.020833334 Combine like terms: 1.020833334 + -1.020833334 = 0.000000000 0.000000000 + p = -2.071738568 + -1.020833334 p = -2.071738568 + -1.020833334 Combine like terms: -2.071738568 + -1.020833334 = -3.092571902 p = -3.092571902 Simplifying p = -3.092571902

Solution

The solution to the problem is based on the solutions from the subproblems. p = {1.050905234, -3.092571902}

See similar equations:

| 2a+6=-a-(8) | | 144=-16t^2+128t+144 | | 9h+4+-3h=1+4h+-2 | | 1/6(6-w)=1/5(4-2w) | | 7x(x-3)+2(x+3)=6-2x | | 150*2000= | | (y-9)/(y-3) | | 16x^3+40y-30x-2=0 | | n+5=-9+8n | | 2(9x-49)=15x+46 | | -5/.5 | | y+27=-53 | | 5x^2-23x+6=0 | | 4x^2-23x+6=0 | | -85-14=11a | | 0.5x-0.5(2x+5)=0.6(x+3) | | 0=-4.9x^2+0.61 | | 5h^2-19+18=0 | | u^2-29u+100= | | -2+6x=15 | | 2w^2+19w+35=(w+7)(w+7) | | 6x-5x-5=6 | | 2(2y-7)/3=5y-23 | | (6x+3)(2x-5)= | | 14+12n=11n-37 | | Inx=-1/2 | | 12x-11x=-37-14 | | 13=8-d | | 4sin^2x=2cosx+2 | | v^2-18v+77=-6 | | 4y^7/2y^2 | | G(x)=f(x)+3 |

Equations solver categories