(n/6)-(7n/12)=(1/6)

Simple and best practice solution for (n/6)-(7n/12)=(1/6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n/6)-(7n/12)=(1/6) equation:



(n/6)-(7n/12)=(1/6)
We move all terms to the left:
(n/6)-(7n/12)-((1/6))=0
We add all the numbers together, and all the variables
(+n/6)-(+7n/12)-((+1/6))=0
We get rid of parentheses
n/6-7n/12-((+1/6))=0
We calculate fractions
(-1512n^2)/()+12n/()+()/()=0
We add all the numbers together, and all the variables
(-1512n^2)/()+12n/()+1=0
We multiply all the terms by the denominator
(-1512n^2)+12n+1*()=0
We add all the numbers together, and all the variables
(-1512n^2)+12n=0
We get rid of parentheses
-1512n^2+12n=0
a = -1512; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-1512)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-1512}=\frac{-24}{-3024} =1/126 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-1512}=\frac{0}{-3024} =0 $

See similar equations:

| 2.5x+4=-16 | | 103^3t=60 | | 7(y-1)=5(y=3) | | 18=10+8x | | -3(3+x)+4(x-6)=-9 | | 10(x-1)-8x=-5x+11 | | ((5x12=)/3)+30-50 | | 2m^2-m=6 | | x/8+11=4 | | -3(3+x)+4(x-6=-9 | | 6x=5+29 | | 2x-44=8(x-4) | | 3z+1+1+5=10 | | 5w+20=-8(w-9) | | 3x+6x=159 | | 10=10+10z | | q+1/5=3/5 | | 4x^2-16+x=0 | | x/1/2-100=300 | | 1.46=x/100 | | 3+3y=24 | | 1.46=x/50 | | -7x+8=-9 | | −8=−(x+4)=5 | | -2x-3=-4 | | y+7=-42 | | -10x+4=18 | | 6(x+2)=56+5x | | 5(x+2)=56+6x | | 20=8+3(m-2)=8 | | -4x+8=-11 | | 6(x-2)=5x+56 |

Equations solver categories