(n/2)*((4+((n-1)*6)))=660

Simple and best practice solution for (n/2)*((4+((n-1)*6)))=660 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n/2)*((4+((n-1)*6)))=660 equation:



(n/2)((4+((n-1)*6)))=660
We move all terms to the left:
(n/2)((4+((n-1)*6)))-(660)=0
Domain of the equation: 2)((4+((n-1)*6)))!=0
n∈R
We add all the numbers together, and all the variables
(+n/2)((4+((n-1)*6)))-660=0
We multiply all the terms by the denominator
(+n-660*2)((4+((n-1)*6)))=0
We calculate terms in parentheses: +(+n-660*2)((4+((n-1)*6))), so:
+n-660*2)((4+((n-1)*6))
determiningTheFunctionDomain n-660*2)((4+((n-1)*6))
Wy multiply elements
-7920n^2+n
Back to the equation:
+(-7920n^2+n)
We get rid of parentheses
-7920n^2+n=0
a = -7920; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-7920)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-7920}=\frac{-2}{-15840} =1/7920 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-7920}=\frac{0}{-15840} =0 $

See similar equations:

| n*(4+6n-6)=330 | | 6n^2-2n=330 | | 18x-359=-17 | | (3x+10)+(2x+15)=90 | | n/2(4+6n-6)=330 | | x/3+65=90 | | 3y=19=22 | | |4x-1|=|-3x+2| | | 15/4–7x=19 | | 2x²+53x-129=0 | | 8g-7=5g+6 | | 8g-7=5g+6. | | 6x-61=-6x+47 | | 100=20*(1+0.1)^x | | -5x-6=-7x-12 | | -5x-23=3x+17 | | 4m²-8m-5=0 | | 6x+18=-9x-42 | | x-9=-3x+23 | | 21.1x+46=10.9x+35.2 | | 1÷4×x+6=9 | | 12y+7=151 | | 7p-21=7 | | .2x-3(x+4)=-5 | | -6x+17=6x-7 | | b=10-2b | | 2b+b=20 | | 38=27+77/b | | 9b+36=81 | | 2x-5+4=25-3x | | 4×q=72 | | 5x-6=10-9x |

Equations solver categories