(n-1)+4(n-1)+8(n-1)=78

Simple and best practice solution for (n-1)+4(n-1)+8(n-1)=78 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n-1)+4(n-1)+8(n-1)=78 equation:


Simplifying
(n + -1) + 4(n + -1) + 8(n + -1) = 78

Reorder the terms:
(-1 + n) + 4(n + -1) + 8(n + -1) = 78

Remove parenthesis around (-1 + n)
-1 + n + 4(n + -1) + 8(n + -1) = 78

Reorder the terms:
-1 + n + 4(-1 + n) + 8(n + -1) = 78
-1 + n + (-1 * 4 + n * 4) + 8(n + -1) = 78
-1 + n + (-4 + 4n) + 8(n + -1) = 78

Reorder the terms:
-1 + n + -4 + 4n + 8(-1 + n) = 78
-1 + n + -4 + 4n + (-1 * 8 + n * 8) = 78
-1 + n + -4 + 4n + (-8 + 8n) = 78

Reorder the terms:
-1 + -4 + -8 + n + 4n + 8n = 78

Combine like terms: -1 + -4 = -5
-5 + -8 + n + 4n + 8n = 78

Combine like terms: -5 + -8 = -13
-13 + n + 4n + 8n = 78

Combine like terms: n + 4n = 5n
-13 + 5n + 8n = 78

Combine like terms: 5n + 8n = 13n
-13 + 13n = 78

Solving
-13 + 13n = 78

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '13' to each side of the equation.
-13 + 13 + 13n = 78 + 13

Combine like terms: -13 + 13 = 0
0 + 13n = 78 + 13
13n = 78 + 13

Combine like terms: 78 + 13 = 91
13n = 91

Divide each side by '13'.
n = 7

Simplifying
n = 7

See similar equations:

| x=100-1*2 | | Ix-1I=3x+1 | | 2x*5=2 | | 15x-4.9x^2=4 | | 0.17=x*(1-x) | | tanx=3x | | 4x+61=9x-9 | | 22y+100=x | | 22x+100=x | | -6.25x+262.4=250 | | -6.25+262.6=250 | | 17-6=9-9x | | 5a+8=-27 | | .57x-4=.14(x+14) | | .166(x-9)=.83x+8.5 | | -9(3m+9)=-27m | | 4x^3+10=42 | | 12m^2n^7/4m^3n^6 | | log(11)+log(15)=log | | n-1+4n-4+8n-8=26 | | 9*y+2*(3y)=10 | | .5x+5+.25x+4=42 | | 19/68=6 | | 2x+6-3x-4=0 | | .5x+5=42 | | Y+b=17 | | 1-3x-x^3=2x-2 | | 4*y+8(2y)=12 | | 4xy+8(2y)=12 | | 7x^2+2x-3= | | 8x-7=56-1x | | -16x^2+64x+96=0 |

Equations solver categories