If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(n+2)(n+3)=132
We move all terms to the left:
(n+2)(n+3)-(132)=0
We multiply parentheses ..
(+n^2+3n+2n+6)-132=0
We get rid of parentheses
n^2+3n+2n+6-132=0
We add all the numbers together, and all the variables
n^2+5n-126=0
a = 1; b = 5; c = -126;
Δ = b2-4ac
Δ = 52-4·1·(-126)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-23}{2*1}=\frac{-28}{2} =-14 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+23}{2*1}=\frac{18}{2} =9 $
| 17s+10s+90=180 | | 6t+6t+3t=180 | | 2/3(x+3)^2=5 | | 2w+3w+50=180 | | 2(x+x+3)=22 | | 9m-7m+-14=8 | | 18=3(g-10) | | 33+85+2a=180 | | -4x*4*6=3x(-x)(-2) | | (x-1)*2=1 | | -4x(4)(6)=3x(-x)(-2) | | -4x^2(6)=3x(-x)(-2) | | 2b+3b+70=180 | | (x-3)*2=4 | | 182×x=0 | | x*2+6x+5=0 | | y+-3y=18 | | s+-8=9 | | 24×x-35=85 | | x*2=5x | | -10=-2(v-3) | | 19j-16j=9 | | 1/6+y=1+6y/2 | | 12k+-6k=12 | | 12u-9u=-9 | | -j-2j-9=9 | | 2n*2-11n-21=0 | | 4x^2-3=-19 | | -17a+18a+-9=-14 | | 9+8x=12+7x | | 4(y+2)+(3y-7)=3(3y-1) | | -10u+7+-6=18 |