(n+2)(2-n)n=(n-2)(2-n)5-(n-2)(n+2)(n-1)

Simple and best practice solution for (n+2)(2-n)n=(n-2)(2-n)5-(n-2)(n+2)(n-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n+2)(2-n)n=(n-2)(2-n)5-(n-2)(n+2)(n-1) equation:



(n+2)(2-n)n=(n-2)(2-n)5-(n-2)(n+2)(n-1)
We move all terms to the left:
(n+2)(2-n)n-((n-2)(2-n)5-(n-2)(n+2)(n-1))=0
We add all the numbers together, and all the variables
(n+2)(-1n+2)n-((n-2)(-1n+2)5-(n-2)(n+2)(n-1))=0
We multiply parentheses ..
(-1n^2+2n-2n+4)n-((n-2)(-1n+2)5-(n-2)(n+2)(n-1))=0
We calculate terms in parentheses: -((n-2)(-1n+2)5-(n-2)(n+2)(n-1)), so:
(n-2)(-1n+2)5-(n-2)(n+2)(n-1)
We multiply parentheses ..
(-1n^2+2n+2n-4)5-(n-2)(n+2)(n-1)
We multiply parentheses
-5n^2+10n+10n-(n-2)(n+2)(n-1)-20
We multiply parentheses ..
-5n^2-(+n^2+2n-2n-4)(n-1)+10n+10n-20
We add all the numbers together, and all the variables
-5n^2-(+n^2+2n-2n-4)(n-1)+20n-20
Back to the equation:
-(-5n^2-(+n^2+2n-2n-4)(n-1)+20n-20)
We multiply parentheses
-1n^3+2n^2-2n^2-(-5n^2-(+n^2+2n-2n-4)(n-1)+20n-20)+4n=0
We calculate terms in parentheses: -(-5n^2-(+n^2+2n-2n-4)(n-1)+20n-20), so:
-5n^2-(+n^2+2n-2n-4)(n-1)+20n-20
We do not support enpression: n^3

See similar equations:

| -32-24n=-2 | | 30+8t+100=70+10t | | 41w2–13w=0 | | 3n2+2n=0 | | x2+17x=0 | | t2+9t=0 | | v2+40v=0 | | s2+6s=0 | | 8x+9=5x-3 | | 20+72t=80+18t | | 15(y-4)-2(y+9)+5(y+6)=0 | | 15(y-4)-2(y+9)+(y+6)=0 | | 3(4x-8)=1/5(35x+30 | | 15(y-4)-2(y+6)=0 | | 3^(x-2)+9=0 | | 5t-3=18+3(1-t | | -3/2=2/7x-7/3 | | 1/5+5=19-1/2x | | -3(x–9)=½(4x+12) | | 7(1+5n)=147 | | 8(6-2x)-3x=-85 | | Y=11x+100 | | -2=-3+b÷20 | | (12x2)+11=x | | -2(3+x)=-16 | | 9=-9+3m | | -8+4x=-68 | | 9+6n=117 | | 4(-4k+4)=96 | | 90=4v-3(6v-2) | | 5x+9=2(x+8) | | 91=4(5+3a)-1 |

Equations solver categories