(n+0.1)2+(2n)2=(n+0.6)2+(n)2

Simple and best practice solution for (n+0.1)2+(2n)2=(n+0.6)2+(n)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n+0.1)2+(2n)2=(n+0.6)2+(n)2 equation:



(n+0.1)2+(2n)2=(n+0.6)2+(n)2
We move all terms to the left:
(n+0.1)2+(2n)2-((n+0.6)2+(n)2)=0
We add all the numbers together, and all the variables
2n^2+(n+0.1)2-((n+0.6)2+n2)=0
We multiply parentheses
2n^2+2n-((n+0.6)2+n2)+0.2=0
We calculate terms in parentheses: -((n+0.6)2+n2), so:
(n+0.6)2+n2
We add all the numbers together, and all the variables
n^2+(n+0.6)2
We multiply parentheses
n^2+2n+1.2
Back to the equation:
-(n^2+2n+1.2)
We get rid of parentheses
2n^2-n^2+2n-2n-1.2+0.2=0
We add all the numbers together, and all the variables
n^2-1=0
a = 1; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·1·(-1)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2}{2*1}=\frac{-2}{2} =-1 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2}{2*1}=\frac{2}{2} =1 $

See similar equations:

| 3g−4=2 | | 12=k-7+2 | | -2(6x-7)+6x=6(x+5) | | 10=45b | | 3+5n=1+8n+8 | | 5u-2=-17 | | g+15.97=4.97 | | -132=-6a | | -2(3x-8=30 | | 1/2x-7/2=1/5x-1/2 | | -11/3(5p-3/2)=583 | | 29-6h=h+50 | | C-3/2-1=c-9/3 | | -4=1/2t-2 | | 25/u=-15 | | (1+0.8)x=(2+0.75)x | | -11/3(5p-3/2)=383 | | 7y+3=2y | | -8u+4(u-4)=12 | | -6x-36=-8(x+3) | | -35-8b=-7+7(6b-4) | | 50=12.50m | | 10.8q-19.78-7.3q=7.4q+11.42 | | 8n+15=47 | | 1.2(x+4)=2.4x+1.2 | | -9s+5s=-10 | | 6(u-1)-8=-4(-6u+4)-4u | | 8x-(5x+5)=22 | | 4.2-2x=3x+17 | | 4x-16=4(x-4 | | (3•x)•4=3•(x•4) | | -7(y+9)=-5y-43 |

Equations solver categories