If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (k + -1) * x + (k + -2) * y + -1k = 0 Reorder the terms: (-1 + k) * x + (k + -2) * y + -1k = 0 Reorder the terms for easier multiplication: x(-1 + k) + (k + -2) * y + -1k = 0 (-1 * x + k * x) + (k + -2) * y + -1k = 0 Reorder the terms: (kx + -1x) + (k + -2) * y + -1k = 0 (kx + -1x) + (k + -2) * y + -1k = 0 Reorder the terms: kx + -1x + (-2 + k) * y + -1k = 0 Reorder the terms for easier multiplication: kx + -1x + y(-2 + k) + -1k = 0 kx + -1x + (-2 * y + k * y) + -1k = 0 Reorder the terms: kx + -1x + (ky + -2y) + -1k = 0 kx + -1x + (ky + -2y) + -1k = 0 Reorder the terms: -1k + kx + ky + -1x + -2y = 0 Solving -1k + kx + ky + -1x + -2y = 0 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add 'x' to each side of the equation. -1k + kx + ky + -1x + x + -2y = 0 + x Combine like terms: -1x + x = 0 -1k + kx + ky + 0 + -2y = 0 + x -1k + kx + ky + -2y = 0 + x Remove the zero: -1k + kx + ky + -2y = x Add '2y' to each side of the equation. -1k + kx + ky + -2y + 2y = x + 2y Combine like terms: -2y + 2y = 0 -1k + kx + ky + 0 = x + 2y -1k + kx + ky = x + 2y Reorder the terms: -1k + kx + ky + -1x + -2y = x + -1x + 2y + -2y Combine like terms: x + -1x = 0 -1k + kx + ky + -1x + -2y = 0 + 2y + -2y -1k + kx + ky + -1x + -2y = 2y + -2y Combine like terms: 2y + -2y = 0 -1k + kx + ky + -1x + -2y = 0 The solution to this equation could not be determined.
| 15p/2=15 | | 0.01x^2+0.25x-0.6=0 | | 11-2x=3-4x | | 6+9+5= | | 8x^3-7x^2+1=0 | | x^3-6x^2+4x+1=0 | | 3.4x-4=11.2x | | 2X^2-16X+8y+64=0 | | 0.3(2)+X=0.5(2+X) | | 503=0.30(x) | | 0.2(7)+x=0.3(7+x) | | 2x-18=40 | | x^2-12x+y+36=0 | | 653=0.30(x) | | 626=0.30(x) | | 584=0.30(x) | | 5x-9x-6x=780 | | 545=0.30(x) | | 450=0.30(x) | | 3450=0.30(x) | | 398=0.30(x) | | 367=0.30(x) | | 10x-3y=21 | | 6a^22b^7-24a^22b^6= | | 306=0.30(x) | | 8=2+X(10-2) | | 5+-22= | | 261=.30(x) | | 6x/a-7x/c=b | | 10e-7= | | 10e-7=5e-27 | | 19c-3(2c-2)= |