(c+1)/(c-5)+(c-2)/(c^2-7c+10)

Simple and best practice solution for (c+1)/(c-5)+(c-2)/(c^2-7c+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (c+1)/(c-5)+(c-2)/(c^2-7c+10) equation:


D( c )

c-5 = 0

c^2-(7*c)+10 = 0

c-5 = 0

c-5 = 0

c-5 = 0 // + 5

c = 5

c^2-(7*c)+10 = 0

c^2-(7*c)+10 = 0

c^2-7*c+10 = 0

c^2-7*c+10 = 0

DELTA = (-7)^2-(1*4*10)

DELTA = 9

DELTA > 0

c = (9^(1/2)+7)/(1*2) or c = (7-9^(1/2))/(1*2)

c = 5 or c = 2

c in (-oo:2) U (2:5) U (5:+oo)

(c+1)/(c-5)+(c-2)/(c^2-(7*c)+10) = 0

(c+1)/(c-5)+(c-2)/(c^2-7*c+10) = 0

c^2-7*c+10 = 0

c^2-7*c+10 = 0

c^2-7*c+10 = 0

DELTA = (-7)^2-(1*4*10)

DELTA = 9

DELTA > 0

c = (9^(1/2)+7)/(1*2) or c = (7-9^(1/2))/(1*2)

c = 5 or c = 2

(c-2)*(c-5) = 0

(c+1)/(c-5)+(c-2)/((c-2)*(c-5)) = 0

((c+1)*(c-2))/((c-5)*(c-2))+(c-2)/((c-5)*(c-2)) = 0

(c+1)*(c-2)+c-2 = 0

c^2-4 = 0

(c^2-4)/((c-5)*(c-2)) = 0

(c^2-4)/((c-5)*(c-2)) = 0 // * (c-5)*(c-2)

c^2-4 = 0

1*c^2 = 4 // : 1

c^2 = 4

c^2 = 4 // ^ 1/2

abs(c) = 2

c = 2 or c = -2

c in { 2}

c = -2

See similar equations:

| 3(81x+3x+7)-2(121x-5x+9)= | | 10*3-1+3*16.66667=x | | a^2-1100a=-58225.8 | | 10*3-1+3*16.666=x | | w/3=54 | | 6t^2+31+38=0 | | 55/18-17/6 | | 5/3z-4=--3/1-2z | | 3x^2=39xgcf | | 7.36+2/3+55 | | 2v=58 | | 1/18-4/27 | | x/2x-5=x+3/-1 | | u/4=68 | | 3z-4= | | 43=3x | | 64-16/2+(8*4)-3*8 | | 5(x-3)=7+3x | | 12x+8=8x+72 | | -4(-4x-6+5k)= | | 36x^2+42x+10=0 | | -42=-4x-6 | | 5/7+(5/7) | | x+5y=60 | | 4(7-4y)+5y=-5 | | 5x^2-8+2=0 | | -7(x-2)-(x-5)=31 | | X/8=9/6 | | a^2-550a=-58225.8 | | a^2-550a=58225.8 | | m^2+4m-21= | | (r-44)7=4 |

Equations solver categories