If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(b+45)+b+3/2b+90+(2b-90)=540
We move all terms to the left:
(b+45)+b+3/2b+90+(2b-90)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+(b+45)+3/2b+(2b-90)-450=0
We get rid of parentheses
b+b+3/2b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 2(x-5)=6(2+1/2x) | | 8/7x+14=4/x+2-4/7 | | 2(x-6)=x-6(2) | | -4x-3=-2x+x+15 | | 5(x-2=4x+7 | | z+10=z-8 | | 2=8x+6 | | X+6x-4=5+3x-6 | | 11x+2=75 | | 2(x+3)-2=2x+3 | | (X+3)^2=x^2+6x | | (X^3+3)^2=x^2-6x | | 5n^2-18n-18=0 | | 12=2t-6 | | 4x-5x+1=-x+1 | | 50-2x=40-1.50x | | 4(x+2)-2x=4x+2 | | z+5/7=3 | | 27n=10 | | 8x-17=4x+1 | | x=-7/28 | | 3*(5*x)+4=7*(x²-5) | | 3*(5*x)+4=7*(x^2-5) | | O.625(x+10)-10=0 | | -3(x+9)=-34 | | 5/p=9/64 | | (3/x)+4=(5/2x)+(17/4) | | x=-54/18 | | (X+4)/4=2-(x+5)/5 | | 8x+9=2x+9 | | -34=-7w+3(w+2) | | 7.3^a=5.2^a |