(b+4)(b+1)(b-2)=

Simple and best practice solution for (b+4)(b+1)(b-2)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (b+4)(b+1)(b-2)= equation:


Simplifying
(b + 4)(b + 1)(b + -2) = 0

Reorder the terms:
(4 + b)(b + 1)(b + -2) = 0

Reorder the terms:
(4 + b)(1 + b)(b + -2) = 0

Reorder the terms:
(4 + b)(1 + b)(-2 + b) = 0

Multiply (4 + b) * (1 + b)
(4(1 + b) + b(1 + b))(-2 + b) = 0
((1 * 4 + b * 4) + b(1 + b))(-2 + b) = 0
((4 + 4b) + b(1 + b))(-2 + b) = 0
(4 + 4b + (1 * b + b * b))(-2 + b) = 0
(4 + 4b + (1b + b2))(-2 + b) = 0

Combine like terms: 4b + 1b = 5b
(4 + 5b + b2)(-2 + b) = 0

Multiply (4 + 5b + b2) * (-2 + b)
(4(-2 + b) + 5b * (-2 + b) + b2(-2 + b)) = 0
((-2 * 4 + b * 4) + 5b * (-2 + b) + b2(-2 + b)) = 0
((-8 + 4b) + 5b * (-2 + b) + b2(-2 + b)) = 0
(-8 + 4b + (-2 * 5b + b * 5b) + b2(-2 + b)) = 0
(-8 + 4b + (-10b + 5b2) + b2(-2 + b)) = 0
(-8 + 4b + -10b + 5b2 + (-2 * b2 + b * b2)) = 0
(-8 + 4b + -10b + 5b2 + (-2b2 + b3)) = 0

Combine like terms: 4b + -10b = -6b
(-8 + -6b + 5b2 + -2b2 + b3) = 0

Combine like terms: 5b2 + -2b2 = 3b2
(-8 + -6b + 3b2 + b3) = 0

Solving
-8 + -6b + 3b2 + b3 = 0

Solving for variable 'b'.

The solution to this equation could not be determined.

See similar equations:

| 2t=24.5 | | 2t=23.5 | | 6x^3/x | | 2x^2-20x-1200=0 | | 0=30+30q | | p=30+30q | | Xand-5=10 | | x-11/30=13/30 | | 6x^3+8x-26x^2=0 | | 5(7*1-7)=x | | 5(7*1-7)= | | 5(7x-7)*1= | | 4(3-x)=-x-12+3x | | 2x+2=4x+52 | | Xln(8)=2-xln(2) | | ht=-16t^2+129t*4 | | 5(4-3y)= | | .25x-.2=.15x+1-.5x | | 15x^4-120x^2+70=0 | | 3x^2-64x+256=0 | | X+x-54005=299665 | | (2)(x)=15x-2 | | 0.45x-9=0.9x | | X/11.2=4/7 | | loge(3x)=0.6 | | ln(3x)=0.6 | | p^2+2pycotx-y^2=0 | | 23-x/5x/2-12 | | Ln(x-3)-lnx=1.5x | | 15-14x=10+45 | | (b+1)+b=1.1 | | 9=(-42136bln+10)+(48614bln) |

Equations solver categories