(b+3)(b+4)(b+1)=0

Simple and best practice solution for (b+3)(b+4)(b+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (b+3)(b+4)(b+1)=0 equation:


Simplifying
(b + 3)(b + 4)(b + 1) = 0

Reorder the terms:
(3 + b)(b + 4)(b + 1) = 0

Reorder the terms:
(3 + b)(4 + b)(b + 1) = 0

Reorder the terms:
(3 + b)(4 + b)(1 + b) = 0

Multiply (3 + b) * (4 + b)
(3(4 + b) + b(4 + b))(1 + b) = 0
((4 * 3 + b * 3) + b(4 + b))(1 + b) = 0
((12 + 3b) + b(4 + b))(1 + b) = 0
(12 + 3b + (4 * b + b * b))(1 + b) = 0
(12 + 3b + (4b + b2))(1 + b) = 0

Combine like terms: 3b + 4b = 7b
(12 + 7b + b2)(1 + b) = 0

Multiply (12 + 7b + b2) * (1 + b)
(12(1 + b) + 7b * (1 + b) + b2(1 + b)) = 0
((1 * 12 + b * 12) + 7b * (1 + b) + b2(1 + b)) = 0
((12 + 12b) + 7b * (1 + b) + b2(1 + b)) = 0
(12 + 12b + (1 * 7b + b * 7b) + b2(1 + b)) = 0
(12 + 12b + (7b + 7b2) + b2(1 + b)) = 0
(12 + 12b + 7b + 7b2 + (1 * b2 + b * b2)) = 0
(12 + 12b + 7b + 7b2 + (1b2 + b3)) = 0

Combine like terms: 12b + 7b = 19b
(12 + 19b + 7b2 + 1b2 + b3) = 0

Combine like terms: 7b2 + 1b2 = 8b2
(12 + 19b + 8b2 + b3) = 0

Solving
12 + 19b + 8b2 + b3 = 0

Solving for variable 'b'.

The solution to this equation could not be determined.

See similar equations:

| b+8+2b=71 | | 1/3c=3c+9 | | 1/5×2/7÷2/5 | | (x+5)(x-2)(3x-5)=0 | | 3/7m=30 | | 2x-5/9=x-17/18 | | (3x-7)(x-2)(x+4)=0 | | 3-(3*6)-2= | | 2x^4+8x^2+24=0 | | 8^2-80/4^2x9-3= | | 7x-2=4x-41 | | 2(9-8y)+7y=0 | | (4a-12)+(11-25)= | | 1/k^2=.11 | | 2y(3x)=1740 | | (24y-56)-(8y+7)= | | 7x-24=8x-4 | | x=9-8y | | 2(x-5)-(7x-12)= | | 24/68=6/× | | (1)/(t)+(1)/(3t)=(1)/(6) | | 20.5(1.5+20.5)/2 | | 5x^2-2y^3=18 | | 1/2*-5+3 | | 8(3x-4)=5(4x+8) | | log[2](22-5x)=5 | | Y=3/5X6 | | 9+x+(x+2)=35 | | 9/z+5+z+8/z^2-25+8/z-5= | | 4x/34 | | 41-233/7 | | 16u^2y/4u^3-20u^3x^3 |

Equations solver categories