(a+5)(a-2)=(a+1)2

Simple and best practice solution for (a+5)(a-2)=(a+1)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (a+5)(a-2)=(a+1)2 equation:



(a+5)(a-2)=(a+1)2
We move all terms to the left:
(a+5)(a-2)-((a+1)2)=0
We multiply parentheses ..
(+a^2-2a+5a-10)-((a+1)2)=0
We calculate terms in parentheses: -((a+1)2), so:
(a+1)2
We multiply parentheses
2a+2
Back to the equation:
-(2a+2)
We get rid of parentheses
a^2-2a+5a-2a-10-2=0
We add all the numbers together, and all the variables
a^2+a-12=0
a = 1; b = 1; c = -12;
Δ = b2-4ac
Δ = 12-4·1·(-12)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*1}=\frac{-8}{2} =-4 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*1}=\frac{6}{2} =3 $

See similar equations:

| (a+5)(a-2)=(2+1)2 | | 2(u+8)=-2(6u-4)+4u | | 8.3+u/7=-9.2 | | y+y=3y | | (x+4)(x+1)=x2+59 | | 16(z-1)^4+(z+1)^4=0 | | 2(y-2)-y=3(y-1)+9 | | 16t=15t+2 | | m+6=6+m | | 8-6x=x-12 | | 6x-3x-4=-1 | | 70-10x=-20 | | 8=-2x+18 | | (5-10)(3+x)=0 | | 28930=x+0.0055x | | -3y-8-2y=-3 | | -2x-6x+5=5 | | 5x-3x+11=21 | | 5x-3x+11=8x-21 | | -3x-11=8x-21 | | 15y^2=45y | | (5+x)=5 | | 4(7-3)-6(y+1)=4(3y+4)-2(8+6y) | | 16+3x=x-12 | | 4x+8=2x=12 | | 5k+1=31 | | -3r+1=-2 | | 8(x–5)=2 | | 9j+4=5j-1 | | 3d+27=4.5d | | 3d+27=4.5d+0 | | 2k-3k-5=0 |

Equations solver categories