If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(a+10)(a-10)=0
We use the square of the difference formula
a^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $
| 1-1/5x=-1/4(5+x) | | -1/2-4/3w=3/5 | | –1c+3=7 | | -2(u-2)=-9u+11 | | 268=65/d+8 | | 4(u-4)-1=-2(-9u+6)-4u | | 14a-11a-2a=17 | | k-k+2k+2k=8 | | 32x+4=136 | | 3x+38=74 | | 20p-12p+8p+-20=-16 | | 16w-8w-8w+w=14 | | 20w+4w-21w+4w-6w=11 | | 3y+18=-6(y+6) | | 20g−10g+2g−9g+g=12 | | 10x+15+10x+2=37 | | 18b−16b=12 | | 20p−12p+8p+–20p=–16 | | 12c-8c=16 | | h+3h+4h-7h+2h=9 | | 5s-4s=5 | | 4-5z=3-2z | | 20a-17a=18 | | 3a-2a+3=18 | | 5s−4s=5 | | 19w-12w-7w+3w=6 | | 4g+2g=12 | | 14u+u-5u=20 | | 6s-5s=17 | | 8t-27=69 | | -2g+13g+8=-3 | | -9(p-91)=-81 |