(a+-10)(a+-10)=200

Simple and best practice solution for (a+-10)(a+-10)=200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (a+-10)(a+-10)=200 equation:



(a+-10)(a+-10)=200
We move all terms to the left:
(a+-10)(a+-10)-(200)=0
We add all the numbers together, and all the variables
(a-10)(a-10)-200=0
We multiply parentheses ..
(+a^2-10a-10a+100)-200=0
We get rid of parentheses
a^2-10a-10a+100-200=0
We add all the numbers together, and all the variables
a^2-20a-100=0
a = 1; b = -20; c = -100;
Δ = b2-4ac
Δ = -202-4·1·(-100)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{2}}{2*1}=\frac{20-20\sqrt{2}}{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{2}}{2*1}=\frac{20+20\sqrt{2}}{2} $

See similar equations:

| 7x^2-41x+0=0 | | 7x^2-41x=0 | | 21=2x+x | | 25x^2-24x+8=0 | | 7(w-7)=5w-33 | | 18+12(x–5)=6(x+3)+6x | | 13x-75=180 | | X+1/2y=16 | | 5x+2=-8+3x+22 | | 1=0.4x-0.9x-24 | | 2x+(3x-42)=180 | | -x=0,85 | | 9=10x-x | | 4(c+11)=76 | | x+5/10=2/3x | | 2*x*x+4*2=4 | | -2{x-4}=7{x-4} | | 25^x-3*2x-3=3125 | | .18(y-7)+0.10y=0.20y-0.5 | | .16(y-4)+0.14y=0.20y-0.9 | | 4x-15=4x-9 | | 8x/9=5x+30 | | 8(3x+5)+6(5x-7)=-2 | | 4x/8=1 | | 8(-6-3x)+4(2x=2)=8 | | -3(x+8)-1=6x+11 | | 480=(1200*0.1x)/(1200+0.1x) | | F(x)=8x^2+x+5 | | a+2.4=2.5 | | -a+4a-9-8=8a+6 | | 4+6(5v+5)=-35+7v | | 48/54=x/6 |

Equations solver categories