(a*a)+(a*a)=20

Simple and best practice solution for (a*a)+(a*a)=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (a*a)+(a*a)=20 equation:



(a*a)+(a*a)=20
We move all terms to the left:
(a*a)+(a*a)-(20)=0
We add all the numbers together, and all the variables
(+a*a)+(+a*a)-20=0
We get rid of parentheses
a*a+a*a-20=0
Wy multiply elements
a^2+a^2-20=0
We add all the numbers together, and all the variables
2a^2-20=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $

See similar equations:

| 5x+10=30+90 | | 5x+10+90=30 | | w+51=4w | | 30+90=5x+10 | | 35x+80+65=180 | | 35x+80=65 | | (6+2)x5=40 | | 19y-21=61 | | 10b=b+27 | | 3w=w+26 | | 5^(2y+1)=4(5)^y+1-15 | | (u+6)^2=2u^2-2u+60 | | -3x/4=-5/6 | | 3x-4=-8x+5 | | 13x+3=3x+10 | | 13x+5=3x+10 | | (2x-1)/(x+4)=3/2 | | 0.4=0.06+x | | (1293/12945)=x | | x/100=0.55 | | 3x+8-x=5x-9 | | t2+5t+14=0 | | (3x-1)=(5x-3) | | (7x-4)=(38) | | X+3x+2(3x+10)=150 | | (18-2x)=(4x) | | 10y-8=2y-1 | | 3^(2x+1)=27( | | 4x-8-19x=210x+7x-4 | | 6x+17=27 | | 6.9x=500 | | 19.50x=6.9 |

Equations solver categories