If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-4)(Y+3)(2)+(Y+5)(Y+3)(4)=(Y-4)(Y+5)(6)
We move all terms to the left:
(-4)(Y+3)(2)+(Y+5)(Y+3)(4)-((Y-4)(Y+5)(6))=0
We multiply parentheses ..
(-4Y-12)2+(Y+5)(Y+3)4-((Y-4)(Y+5)6)=0
We calculate terms in parentheses: -((Y-4)(Y+5)6), so:We multiply parentheses
(Y-4)(Y+5)6
We multiply parentheses ..
(+Y^2+5Y-4Y-20)6
We multiply parentheses
6Y^2+30Y-24Y-120
We add all the numbers together, and all the variables
6Y^2+6Y-120
Back to the equation:
-(6Y^2+6Y-120)
-8Y+(Y+5)(Y+3)4-(6Y^2+6Y-120)-24=0
We get rid of parentheses
-6Y^2-8Y+(Y+5)(Y+3)4-6Y+120-24=0
We multiply parentheses ..
-6Y^2+(+Y^2+3Y+5Y+15)4-8Y-6Y+120-24=0
We add all the numbers together, and all the variables
-6Y^2+(+Y^2+3Y+5Y+15)4-14Y+96=0
We multiply parentheses
-6Y^2+4Y^2+12Y+20Y-14Y+60+96=0
We add all the numbers together, and all the variables
-2Y^2+18Y+156=0
a = -2; b = 18; c = +156;
Δ = b2-4ac
Δ = 182-4·(-2)·156
Δ = 1572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1572}=\sqrt{4*393}=\sqrt{4}*\sqrt{393}=2\sqrt{393}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{393}}{2*-2}=\frac{-18-2\sqrt{393}}{-4} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{393}}{2*-2}=\frac{-18+2\sqrt{393}}{-4} $
| 6-6×=-2(x+5) | | 2(3x-3)=-3(2x+6) | | 2/3r=-4/9 | | 3x+5+1=7x+35+8 | | 7n-17=60 | | 6=4(10h+2)+7 | | 4/5x+3/5-1/4x=-1/2x+9/10 | | −3∣x+5∣+1=7∣x+5∣+8 | | -13q=7+-16q-6 | | x*3-x*2=12 | | 7(-3+x)=-42 | | 2÷y+5+4÷y-4=6÷y+3 | | v+6/5=6v+6= | | 1. x+30=40 | | -6x+5(-2x-11)=-100 | | 5(2x-8)=4x+3 | | -13q=7+-16 | | 6x+x=240 | | x+7=4x-38 | | v+6/5=6 | | -11/8x-5/2=3 | | 10y+1=11 | | (6x+8)/2-4=3x | | F(x)=4/3x-16 | | X=2x/3+40 | | m/2=m+1/4 | | 7x+-81=360 | | 4(5x-2)=4(x+6) | | $1.53+q=$5.00 | | (2x+1)2=4(x2+x+4) | | 18(v+1)=18 | | x+x/2+x/3+x/4-25=0 |