If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X1)(X+3)=0
We multiply parentheses
X^2+3X=0
a = 1; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*1}=\frac{-6}{2} =-3 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*1}=\frac{0}{2} =0 $
| 3r+2r=9 | | 7p+41=8p+40 | | 6+-5x+2=4x+5 | | 6u=10u-32 | | 12b+(-4b)+5=13 | | 3p+19=5p-1 | | 6x+216=4x+118 | | (v^2+4v-5)(6v-18)=0 | | 4(4p+2)=2(8p+4) | | 2p+23=6p-81 | | 5t-85=2t-31 | | x+4/10=1/5+x-8/2 | | 2a=7a-70 | | -3/5=y+6 | | 4a-71=2a-15 | | 2x-18=-1 | | 2/3(x+4)=0.5(3x-3) | | D=40-4.9t | | 18=n-(-2) | | 5u=u+68 | | -9/4c+4/5=7/8 | | 1/2b+-10=6 | | (4x+3)(2x+4)=0 | | 8u=u+7 | | 3x+6=4x+2x | | 2u=u+5 | | 10z=126 | | 4t=t+42 | | 8x+3=2(3x+3)-1 | | 4v=v+57 | | 2*3^(4y)-11=61 | | 2x+3(x-1)=4x+12 |