(X-7)(3x+5)=(x+7)(2x+3)

Simple and best practice solution for (X-7)(3x+5)=(x+7)(2x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-7)(3x+5)=(x+7)(2x+3) equation:



(X-7)(3X+5)=(X+7)(2X+3)
We move all terms to the left:
(X-7)(3X+5)-((X+7)(2X+3))=0
We multiply parentheses ..
(+3X^2+5X-21X-35)-((X+7)(2X+3))=0
We calculate terms in parentheses: -((X+7)(2X+3)), so:
(X+7)(2X+3)
We multiply parentheses ..
(+2X^2+3X+14X+21)
We get rid of parentheses
2X^2+3X+14X+21
We add all the numbers together, and all the variables
2X^2+17X+21
Back to the equation:
-(2X^2+17X+21)
We get rid of parentheses
3X^2-2X^2+5X-21X-17X-35-21=0
We add all the numbers together, and all the variables
X^2-33X-56=0
a = 1; b = -33; c = -56;
Δ = b2-4ac
Δ = -332-4·1·(-56)
Δ = 1313
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-\sqrt{1313}}{2*1}=\frac{33-\sqrt{1313}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+\sqrt{1313}}{2*1}=\frac{33+\sqrt{1313}}{2} $

See similar equations:

| 12-20x-3=-10x-9 | | -t-4=6+4t | | |k-9|+3=14 | | -7v=-6v+9 | | 2b-9=-b+9 | | (3x+1)=8x-10 | | x+(2x+5)=88 | | 8/1x=14 | | y=1.5(5)+35 | | 3x-4=-3+5 | | -8(u+1)=-5u-11 | | -52=3x^2-24x | | -4d+5=-9+10 | | (0,5x-18)-(24+1,5x)=-15 | | w/5-4=-14 | | -18x+4-2x=3x-1 | | 2x=-2x^2+24 | | 7g=8g+10g | | 2w-46=-5(w+5) | | -15x-43=-11x+29 | | 0.625(x+10)–10=0 | | 15-3(2x-1)=30-2x | | 6z-13=17+z | | 3x-6+5x=26 | | -33-7z=-2(8z+9) | | 3(a+1)-1=3a+2 | | 7g=8g+10 | | -2/3(3r-4)+3r=5/6 | | 6+2a=22 | | -23=6.8e-21 | | 8x=6x+33 | | 3s+10=4s |

Equations solver categories