If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X-35)+X+(X-46)+(1/2)X=360
We move all terms to the left:
(X-35)+X+(X-46)+(1/2)X-(360)=0
Domain of the equation: 2)X!=0We add all the numbers together, and all the variables
X!=0/1
X!=0
X∈R
(X-35)+X+(X-46)+(+1/2)X-360=0
We add all the numbers together, and all the variables
X+(X-35)+(X-46)+(+1/2)X-360=0
We multiply parentheses
X^2+X+(X-35)+(X-46)-360=0
We get rid of parentheses
X^2+X+X+X-35-46-360=0
We add all the numbers together, and all the variables
X^2+3X-441=0
a = 1; b = 3; c = -441;
Δ = b2-4ac
Δ = 32-4·1·(-441)
Δ = 1773
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1773}=\sqrt{9*197}=\sqrt{9}*\sqrt{197}=3\sqrt{197}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{197}}{2*1}=\frac{-3-3\sqrt{197}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{197}}{2*1}=\frac{-3+3\sqrt{197}}{2} $
| 6x=175 | | 1/2(d)-3=2 | | 8h+12h-12=24h+14 | | -5x+(-6)=2(3x-8) | | 5x=120+120=360 | | v-2.33=1.84 | | 6+7x=6x | | 33=8+5p | | 5x=50+90+90=360 | | C(x)=9+0.09x | | 5p-7=-2 | | C(x)=9+0.09 | | -4/3y=16 | | 12=p/3+10 | | 20y-16=4(5y-4) | | 4(5+75)=p | | 32x(x+18)+29x+3(x-5)=945 | | 3(x-4)=7x+1 | | x=5+5;x=5; | | x1/2/x3/18=x1/2∗x−1/6=x3−1/6=x1/3 | | 2(5x+12)-5=6(3x-2)-10 | | 4x+39=90 | | 10x+500=15x+1000 | | x=5+5*2*2+5; | | 12x=128 | | 162/x=18 | | 15d+15d+8d=16 | | 3n+12=8n+4 | | 2x+-12=-2 | | 16x=6x=80 | | 15/7b+5=5/2b+1 | | 5=-2-m |