If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X-30)(X-30)+X(X-30)+X+X=540
We move all terms to the left:
(X-30)(X-30)+X(X-30)+X+X-(540)=0
We add all the numbers together, and all the variables
2X+(X-30)(X-30)+X(X-30)-540=0
We multiply parentheses
X^2+2X+(X-30)(X-30)-30X-540=0
We multiply parentheses ..
X^2+(+X^2-30X-30X+900)+2X-30X-540=0
We add all the numbers together, and all the variables
X^2+(+X^2-30X-30X+900)-28X-540=0
We get rid of parentheses
X^2+X^2-30X-30X-28X+900-540=0
We add all the numbers together, and all the variables
2X^2-88X+360=0
a = 2; b = -88; c = +360;
Δ = b2-4ac
Δ = -882-4·2·360
Δ = 4864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4864}=\sqrt{256*19}=\sqrt{256}*\sqrt{19}=16\sqrt{19}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-88)-16\sqrt{19}}{2*2}=\frac{88-16\sqrt{19}}{4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-88)+16\sqrt{19}}{2*2}=\frac{88+16\sqrt{19}}{4} $
| (4.9t^2)+(2.25t)=0 | | 3(×+1)+1+2x=(2x+2)+x | | 6/7u=24 | | 5(3-y)+8y=39 | | 14+4c=70 | | (10x+24)=(4x+30) | | -4-5x+6=2 | | 4.5=18x= | | 2(6u+9)=12u+22 | | 6(v+10)=78 | | 1+x/4=-2 | | 2x+x+28+x=180 | | 7y-30=47 | | 7v+21=7 | | 4t=3=9 | | 9x+15=36x | | 8(v-7)=-4v+28 | | -4(w+3)+36=4(5-w) | | 2a−9=2a+5 | | 6/x-1=12 | | 4-2x=9x-13 | | -138+10x=132-8x | | 3x-34x-24=0 | | x+150+4x+6x=360 | | 1/4s-3=3/10s-7 | | 0.1t-19.22=-2.3t-19.94+9.6t | | 2x-3x+2=56 | | 5(4-x)+5x=20 | | 20+6q-2=q-2 | | 36=-8u+4(u+6) | | 15u-14u-u+5u-4=11 | | -26=-8+3(b-1) |