If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X-3)(X-3)+(X+5)(X+5)=81
We move all terms to the left:
(X-3)(X-3)+(X+5)(X+5)-(81)=0
We multiply parentheses ..
(+X^2-3X-3X+9)+(X+5)(X+5)-81=0
We get rid of parentheses
X^2-3X-3X+(X+5)(X+5)+9-81=0
We multiply parentheses ..
X^2+(+X^2+5X+5X+25)-3X-3X+9-81=0
We add all the numbers together, and all the variables
X^2+(+X^2+5X+5X+25)-6X-72=0
We get rid of parentheses
X^2+X^2+5X+5X-6X+25-72=0
We add all the numbers together, and all the variables
2X^2+4X-47=0
a = 2; b = 4; c = -47;
Δ = b2-4ac
Δ = 42-4·2·(-47)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-14\sqrt{2}}{2*2}=\frac{-4-14\sqrt{2}}{4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+14\sqrt{2}}{2*2}=\frac{-4+14\sqrt{2}}{4} $
| 10+.15x=40+0.05 | | 2(x-4)x=10 | | 2k÷8=-14 | | 10+3x=4+4x | | 4p+7=27 | | X+(x+460)=740 | | 4y+1=2y+8y= | | 120+.5x=100+.10x | | 3(5x+3)/6=8 | | 3x(5x+3)/6=8 | | 3x(3x+16)=0 | | 186+8x=9.50x | | 5/6x-3=5-7/6x | | 5(8x-1)-3x=8x+24 | | 5(3x+12)=18 | | 4x+3=8x+31 | | x/9=4.5 | | 2/7x-2=12 | | 3+5x=-5x+x | | 7=10-3m | | m÷2-6=-2 | | 9-4x=-9 | | 7x+2x-5x=16 | | 2(7x+9)=13x+1 | | 2x+7+7x-x+5=7x-2 | | 4x+18+8x-4=180 | | 32=15+p | | 45=m+22 | | 17+r=30 | | 4p+3=-18 | | 3x+40=5x-60 | | -2x-4=3x-14 |