(X-3)(4x+1)+2(3-x)(x+2)=0

Simple and best practice solution for (X-3)(4x+1)+2(3-x)(x+2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-3)(4x+1)+2(3-x)(x+2)=0 equation:



(X-3)(4X+1)+2(3-X)(X+2)=0
We add all the numbers together, and all the variables
(X-3)(4X+1)+2(-1X+3)(X+2)=0
We multiply parentheses ..
(+4X^2+X-12X-3)+2(-1X+3)(X+2)=0
We get rid of parentheses
4X^2+X-12X+2(-1X+3)(X+2)-3=0
We multiply parentheses ..
4X^2+2(-1X^2-2X+3X+6)+X-12X-3=0
We add all the numbers together, and all the variables
4X^2+2(-1X^2-2X+3X+6)-11X-3=0
We multiply parentheses
4X^2-2X^2-4X+6X-11X+12-3=0
We add all the numbers together, and all the variables
2X^2-9X+9=0
a = 2; b = -9; c = +9;
Δ = b2-4ac
Δ = -92-4·2·9
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3}{2*2}=\frac{6}{4} =1+1/2 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3}{2*2}=\frac{12}{4} =3 $

See similar equations:

| (24-x)+30=50 | | 4/p=2p-3 | | 4/p=2-3 | | x-4.12=-0.08 | | x-2.76=-2.76 | | 7.4x-5.3(x-1)=7.9 | | y=87+0.2/0.4 | | 100-y=65-0.6y | | 26=-3y+5(y+8) | | 3(w-5)+4w=34 | | 36=6(v+3)-4v | | F(x)=4+15 | | (4x-12)52=180 | | 4(3y+2)-5(6y-1)=2(y-8-6(7y-4)+4y | | 4x+(11.8-3x)=3.8-5x | | 2x+(4x+1)=8x^2+2x | | 12.3=-13.3+8v | | D+5-d=2d= | | 39+(3x)=90 | | 39+(3x)=99 | | 38+(5x+2)=90 | | 12x-12x-6=-6 | | 6x+(2x+12)=180 | | 7x+4+x=180 | | x+4/5=14/3 | | x+4/5=12/3 | | -32-2(-32+10)=x | | -1/4+3/4a=(-7/4a-1) | | 2(5x+3)=6(x+8)2 | | 12=1-(2x-9) | | 18=20-x | | -4=3x+17 |

Equations solver categories