If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X-20)+40+(X-10)+1/3X=360
We move all terms to the left:
(X-20)+40+(X-10)+1/3X-(360)=0
Domain of the equation: 3X!=0We add all the numbers together, and all the variables
X!=0/3
X!=0
X∈R
(X-20)+(X-10)+1/3X-320=0
We get rid of parentheses
X+X+1/3X-20-10-320=0
We multiply all the terms by the denominator
X*3X+X*3X-20*3X-10*3X-320*3X+1=0
Wy multiply elements
3X^2+3X^2-60X-30X-960X+1=0
We add all the numbers together, and all the variables
6X^2-1050X+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $
| -8k-7=7(-k-1) | | 5x+34=(1-7x) | | 5p•(-5)=150 | | 35-5x=-5(7x+5) | | 4x-1+4x+2+3x+4=49 | | 12v2-6v+10=0 | | 2(6+r)=-14 | | -2(b-8)+4b=4b+28 | | 2(x+4)+x=-9 | | -5=n-9/5 | | 819+18x=39x | | 4(-1-x)=16+x | | 3=v7.5 | | 10x-29-7=-53 | | 2=k-15 | | -10-6x=-2(x-5) | | 3(3x+1)-8(2x+3)+1=0 | | a/11=9 | | -10-6x=-2(x-5 | | 0.25r-0.25+0.25=+0.5-0.25r | | (1.75x)-(10+1.25x)=60 | | v2−8v=-3 | | (x+9)^2+((4/3*x+29/3)-6)^2=50 | | j2+18j=-17 | | 7p+12=2(6-8p) | | 13m-22=9m-6=4 | | x2(x+2)(x+6)=0 | | (x-7)=17 | | 17x-9-4(x-1)=28 | | 7p^2-48p-64=0 | | 3/7m-1/7=1/28 | | 15=2m-4 |