(X-1)-5(x-2)-(2x+3)-(5x+2)(x-1)=0

Simple and best practice solution for (X-1)-5(x-2)-(2x+3)-(5x+2)(x-1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-1)-5(x-2)-(2x+3)-(5x+2)(x-1)=0 equation:



(X-1)-5(X-2)-(2X+3)-(5X+2)(X-1)=0
We multiply parentheses
(X-1)-5X-(2X+3)-(5X+2)(X-1)+10=0
We get rid of parentheses
X-5X-2X-(5X+2)(X-1)-1-3+10=0
We multiply parentheses ..
-(+5X^2-5X+2X-2)+X-5X-2X-1-3+10=0
We add all the numbers together, and all the variables
-(+5X^2-5X+2X-2)-6X+6=0
We get rid of parentheses
-5X^2+5X-2X-6X+2+6=0
We add all the numbers together, and all the variables
-5X^2-3X+8=0
a = -5; b = -3; c = +8;
Δ = b2-4ac
Δ = -32-4·(-5)·8
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-13}{2*-5}=\frac{-10}{-10} =1 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+13}{2*-5}=\frac{16}{-10} =-1+3/5 $

See similar equations:

| 83=6x-25 | | 9-x/3=-3 | | n/15=15-n/10 | | 3^(x+2)=81 | | 9q+2-13=0 | | 3/4m+2=-5 | | 2k=5.4k-9 | | -3z^2-2z=0 | | 63x+49-14x+2x-4=36 | | (X+3)(x-1)-(x-1)(x-4)+(x+2)(x+4)-(x+1)(x-2)=17 | | -19-3x=-7 | | 10=-x/7+8 | | n/14=15-n/10 | | 10x+22=5x+7 | | 20x^2-92x-39=0 | | (1-v)(5v-7)=0 | | A÷2+b÷3=7 | | (x^+3)^=4x^+12 | | -5(t-4)+8t=9t-6 | | 3a-11=134 | | 26=n-|-4| | | 4(x-1)=8x-8-4x | | 20=(5/2x)+1 | | y-4=6+-6 | | 3z+15=18+2z | | 3x+7=175-5x | | 2z^2-3z-8=0 | | 3z+13=18+2z | | 18-m=50 | | 7.2=9y | | 6-3y=8-37 | | 6+4x=6x-8x+8 |

Equations solver categories