(X+9)(x+9)+x+x=302

Simple and best practice solution for (X+9)(x+9)+x+x=302 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+9)(x+9)+x+x=302 equation:



(X+9)(X+9)+X+X=302
We move all terms to the left:
(X+9)(X+9)+X+X-(302)=0
We add all the numbers together, and all the variables
2X+(X+9)(X+9)-302=0
We multiply parentheses ..
(+X^2+9X+9X+81)+2X-302=0
We get rid of parentheses
X^2+9X+9X+2X+81-302=0
We add all the numbers together, and all the variables
X^2+20X-221=0
a = 1; b = 20; c = -221;
Δ = b2-4ac
Δ = 202-4·1·(-221)
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{321}}{2*1}=\frac{-20-2\sqrt{321}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{321}}{2*1}=\frac{-20+2\sqrt{321}}{2} $

See similar equations:

| 1/8(24x+16)=3x+6+6x+8 | | 28x-5=2+3(x+3) | | 7(2x+4)=3(3x+1) | | 5(5+x)=5x+x+4x | | 2x+2+6x-4=2(3x-5) | | 92=8n-4 | | 5(3x-3)=3+6(2x+2) | | X+9x+9x+x=302 | | 3v^2-12v+2=0 | | -3(x-2)=x+4+2x | | 3(2x+4)=5x+4x+6 | | 2(4x+5)=6(x+2) | | 3(x-3)+12=1/2(2x+8) | | 2(x+7)=4+3x+6 | | 2x+5x+7=6x-5 | | 12x-10x=44 | | 6-2d=11-7d | | 3(2x+4)=6x+2(x+3) | | 6(x-2)=2x+6+x | | 4(2x+5)=6(x-3) | | 3xx9=81 | | y2+12=7y;4,-3 | | 32+3w=7w | | 9/6=x-9/x | | 20x^2-65x+15=0 | | -(q+14)=2q=1 | | x^2+x-3.4=0 | | 9y+29-13+5=0 | | (s-2)(s+4)=0 | | 9(4x−8)=4(6x+9) | | 3w-1=144 | | 4×(5x-3)=78 |

Equations solver categories