If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X+6)(X-4)=16
We move all terms to the left:
(X+6)(X-4)-(16)=0
We multiply parentheses ..
(+X^2-4X+6X-24)-16=0
We get rid of parentheses
X^2-4X+6X-24-16=0
We add all the numbers together, and all the variables
X^2+2X-40=0
a = 1; b = 2; c = -40;
Δ = b2-4ac
Δ = 22-4·1·(-40)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*1}=\frac{-2-2\sqrt{41}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*1}=\frac{-2+2\sqrt{41}}{2} $
| -5/2-5=3x | | x-(2)=0 | | 0,75*x+1/8*x=1+0,5*(x-1) | | X+2y=13X=13-2y | | 3x=(200-65) | | (8(3w+10))/5=4 | | -10(s+2)=10 | | 7x/100=39-x | | 40-3y=0 | | 3=^-5+7p-6 | | 3x÷5+7=2x÷3 | | 4000000000000x+400000000000x²+5,6=0 | | 4000000000000x3+400000000000x2+5,6=0 | | (5n)/2=6+4 | | –4(w−19)=–4 | | x⁴-10x³+120x+144=0 | | x⁴-10x³+120x-144=0 | | 2x-1+7=10 | | -8-13=5n-8n | | (4p)/7=7-9+8 | | 80+10/3=x | | A^2+b^2=18 | | 25^x/5^x=625 | | 6(a+5)=105 | | (1.75*x)/2=40 | | (1.5*x)*2=40 | | (1.5*x)/2=40 | | {4x-18=18}4x−18=18 | | 0.5x+4x+8x-5=0 | | x-0.1x=128.68 | | 3n^2+5=-24 | | x(x-7)=5x-35 |