(X+5)=(x+1)(x+1)

Simple and best practice solution for (X+5)=(x+1)(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+5)=(x+1)(x+1) equation:



(X+5)=(X+1)(X+1)
We move all terms to the left:
(X+5)-((X+1)(X+1))=0
We get rid of parentheses
X-((X+1)(X+1))+5=0
We multiply parentheses ..
-((+X^2+X+X+1))+X+5=0
We calculate terms in parentheses: -((+X^2+X+X+1)), so:
(+X^2+X+X+1)
We get rid of parentheses
X^2+X+X+1
We add all the numbers together, and all the variables
X^2+2X+1
Back to the equation:
-(X^2+2X+1)
We add all the numbers together, and all the variables
X-(X^2+2X+1)+5=0
We get rid of parentheses
-X^2+X-2X-1+5=0
We add all the numbers together, and all the variables
-1X^2-1X+4=0
a = -1; b = -1; c = +4;
Δ = b2-4ac
Δ = -12-4·(-1)·4
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{17}}{2*-1}=\frac{1-\sqrt{17}}{-2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{17}}{2*-1}=\frac{1+\sqrt{17}}{-2} $

See similar equations:

| 9/10+x=3/20 | | a=45° | | 4x-2=3x+4x | | 71-5×=9x-13 | | -(7y+4)-(-6y-5=0 | | 8(6x+2)=4x | | 8(6x+2)=4 | | 6-3=3(8-x) | | 8x+6=4x-14 | | 8n-8=40 | | (3x)=2x+1 | | x+10=71/7 | | 1/u=4+60 | | 13x-7=11x+1 | | 7x-39=73 | | -2=-(-n-8) | | 7x-7=4x-18 | | −3(−7x+4)−4x=-1.5(-5x+8.6)+2x | | 4×+2y+8=0 | | (2x-8)=7x-3 | | 2x-14=-7x+21 | | F(2x-8)=7x-3 | | -4n-5+n=7(7-7n+6(1+6n) | | 2x-14=-7x+54 | | 65+14m=191 | | 1.75+0.75m=4.75m | | -7(8-2n)=4n+24 | | 8x+12x=13x+2 | | 3(3x-5)-5x=-2x | | 3(3x-5)-5x=@x | | 6(4x+1)=8 | | 3x+43+3x-13=180 |

Equations solver categories