(X+5)+(x+5)=5/2x

Simple and best practice solution for (X+5)+(x+5)=5/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+5)+(x+5)=5/2x equation:



(X+5)+(X+5)=5/2X
We move all terms to the left:
(X+5)+(X+5)-(5/2X)=0
Domain of the equation: 2X)!=0
X!=0/1
X!=0
X∈R
We add all the numbers together, and all the variables
(X+5)+(X+5)-(+5/2X)=0
We get rid of parentheses
X+X-5/2X+5+5=0
We multiply all the terms by the denominator
X*2X+X*2X+5*2X+5*2X-5=0
Wy multiply elements
2X^2+2X^2+10X+10X-5=0
We add all the numbers together, and all the variables
4X^2+20X-5=0
a = 4; b = 20; c = -5;
Δ = b2-4ac
Δ = 202-4·4·(-5)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{30}}{2*4}=\frac{-20-4\sqrt{30}}{8} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{30}}{2*4}=\frac{-20+4\sqrt{30}}{8} $

See similar equations:

| 2+-x=6 | | F(12)=6x | | -12m+10=2 | | 1/2(6−8b)=15 | | a^2+144=288 | | X(0)=5-3y | | 2b–48+3b–24+b–19+3b–17=360 | | (4x+5)=3x+12 | | 6t+8=4t-10 | | x+3.75=19/2 | | 150+50(4+f)=600 | | y-3=-116 | | (10x+11)+41=18x+4 | | 80=8(v+14) | | 3.25-7.75=2.25(2h-8) | | 2x-3x=33 | | 1+9f=6f | | y+465=1280 | | -4+10h=5h+1 | | 42x3=3+8x11 | | 7(4-a)=3(a-) | | 60x-220=860 | | 21​ (6−8b)=15 | | 0=10(x+2)+6x | | 7x+19+x-3=32 | | -9=w+-7 | | 12m-2=16m | | x^2+49=113 | | 4x-6=3x+6= | | -3.5x-(-7)=28 | | 37z+32z+32+58+63=360 | | -6-7b=-10b |

Equations solver categories