(X+2)2+(2x-1)2=5x(x+1)

Simple and best practice solution for (X+2)2+(2x-1)2=5x(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+2)2+(2x-1)2=5x(x+1) equation:



(X+2)2+(2X-1)2=5X(X+1)
We move all terms to the left:
(X+2)2+(2X-1)2-(5X(X+1))=0
We multiply parentheses
2X+4X-(5X(X+1))+4-2=0
We calculate terms in parentheses: -(5X(X+1)), so:
5X(X+1)
We multiply parentheses
5X^2+5X
Back to the equation:
-(5X^2+5X)
We add all the numbers together, and all the variables
6X-(5X^2+5X)+2=0
We get rid of parentheses
-5X^2+6X-5X+2=0
We add all the numbers together, and all the variables
-5X^2+X+2=0
a = -5; b = 1; c = +2;
Δ = b2-4ac
Δ = 12-4·(-5)·2
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{41}}{2*-5}=\frac{-1-\sqrt{41}}{-10} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{41}}{2*-5}=\frac{-1+\sqrt{41}}{-10} $

See similar equations:

| 4b-23=22 | | 4(47-x)+2x=124 | | 5x/11=7 | | 3(4x+3)2=48 | | 20-5x=6-2x | | –2t−4=2−2t | | 1x²+20x-11=-1 | | 6z+3-4z=9) | | 40-x=x+14 | | 3(4x+3)^2=48 | | x²+20x-11=-1 | | 50+4x=90-4x | | 16.x²+20x-11=-1 | | -6=0.75(r�12) | | (14t-2)-(6t+15)=-9 | | 4b-23=-22 | | 78+b=56 | | 3n+46=10 | | 12/x=36/24 | | X^2+10x+16=0. | | Y=(3x+5)4 | | 18x-(-12x)=240 | | 2x+0=60 | | x+70=2x-10 | | 4x^2+108x+454=0 | | 4(f-60)=72 | | -9=9(d-99) | | 3s-(-4)=7 | | 11=1+2n | | 13w=35 | | Zm2=50 | | -5+-2n=-9 |

Equations solver categories