If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (X + 2)(x + -5) = o Reorder the terms: (2 + X)(x + -5) = o Reorder the terms: (2 + X)(-5 + x) = o Multiply (2 + X) * (-5 + x) (2(-5 + x) + X(-5 + x)) = o ((-5 * 2 + x * 2) + X(-5 + x)) = o ((-10 + 2x) + X(-5 + x)) = o (-10 + 2x + (-5 * X + x * X)) = o (-10 + 2x + (-5X + xX)) = o Reorder the terms: (-10 + -5X + 2x + xX) = o (-10 + -5X + 2x + xX) = o Solving -10 + -5X + 2x + xX = o Solving for variable 'X'. Move all terms containing X to the left, all other terms to the right. Add '10' to each side of the equation. -10 + -5X + 2x + 10 + xX = 10 + o Reorder the terms: -10 + 10 + -5X + 2x + xX = 10 + o Combine like terms: -10 + 10 = 0 0 + -5X + 2x + xX = 10 + o -5X + 2x + xX = 10 + o Add '-2x' to each side of the equation. -5X + 2x + -2x + xX = 10 + o + -2x Combine like terms: 2x + -2x = 0 -5X + 0 + xX = 10 + o + -2x -5X + xX = 10 + o + -2x Reorder the terms: -10 + -5X + -1o + 2x + xX = 10 + o + -2x + -10 + -1o + 2x Reorder the terms: -10 + -5X + -1o + 2x + xX = 10 + -10 + o + -1o + -2x + 2x Combine like terms: 10 + -10 = 0 -10 + -5X + -1o + 2x + xX = 0 + o + -1o + -2x + 2x -10 + -5X + -1o + 2x + xX = o + -1o + -2x + 2x Combine like terms: o + -1o = 0 -10 + -5X + -1o + 2x + xX = 0 + -2x + 2x -10 + -5X + -1o + 2x + xX = -2x + 2x Combine like terms: -2x + 2x = 0 -10 + -5X + -1o + 2x + xX = 0 The solution to this equation could not be determined.
| 2x+24=8(x-3) | | 1-3x=-6x-29 | | 7/x-7+6/x+5 | | -36=-14w | | 1.52g-8=.36 | | 8x+7=-7+3x+24 | | K-3k=6k+5-8 | | 1/-2*4 | | -9-8=8x+4-7x | | 9r^2+16r=-7r^2-4 | | 4x+x+5=10x-5x+5 | | ((X-2)*0.45)-(X*0.35)=4.4 | | 1/-2x4 | | -5(r+2)=-59 | | x^2+xy+xz+yx+y^2+yz+zx+zy+z^2= | | (7/x-7)+(6/x+5) | | 5(8n+7)-n= | | 7q+6q+q/5 | | 2+(-10)-(-6)+16= | | 12=x+6-2x | | 4x-3+8=11+5x+3 | | X^3+2x^3-8x=16 | | 6=(3/4)*m-(7/8)*(m-4) | | (3)k/-3 | | 13-(-13)= | | b-5+7b=32 | | 8(2c-7)=56 | | 3/8t=-3 | | 6x+5xy^2-16x^2y^2-36x^2y=0 | | 18/30=n/n+3 | | .8x+7=495 | | (2r-8)=1/7(49r-70) |