(X+2)(x-3)=11+x

Simple and best practice solution for (X+2)(x-3)=11+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+2)(x-3)=11+x equation:



(X+2)(X-3)=11+X
We move all terms to the left:
(X+2)(X-3)-(11+X)=0
We add all the numbers together, and all the variables
(X+2)(X-3)-(X+11)=0
We get rid of parentheses
(X+2)(X-3)-X-11=0
We multiply parentheses ..
(+X^2-3X+2X-6)-X-11=0
We add all the numbers together, and all the variables
(+X^2-3X+2X-6)-1X-11=0
We get rid of parentheses
X^2-3X+2X-1X-6-11=0
We add all the numbers together, and all the variables
X^2-2X-17=0
a = 1; b = -2; c = -17;
Δ = b2-4ac
Δ = -22-4·1·(-17)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-6\sqrt{2}}{2*1}=\frac{2-6\sqrt{2}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+6\sqrt{2}}{2*1}=\frac{2+6\sqrt{2}}{2} $

See similar equations:

| (X×2)(x-3)=x+11 | | p*2+2p-(3)=0 | | p*2+2p=3 | | 36+6x=12x-18 | | 4(7x-6)+2=x+32 | | 9(8-x)/8=-x | | 5x-35=3 | | 5x^2-5x-75=0 | | 7y^2=10 | | x3+8*x2-1800=0 | | 7/3x+(7/3)(4/28)-3=17 | | x+1÷2-x+6÷21=5+5x+9÷28-x-12÷3 | | X+(x+2000)=5000 | | 14−6(5x−6)=−4 | | 9((11+x)=204-12x | | x+5=(x+3)2 | | 5-5(2x-5)=-5 | | X=0.5y-2 | | y/2+8/3=31/6 | | 5x+33/2=4 | | 4.8y=24.0 | | x/6+2=-8 | | m4-29m+100=0 | | 4t/3=12 | | x/2-x/8=1/8 | | x2+2x=22.5625 | | x/2-x/3-x/4=13 | | 3(4x+9)=-41+51 | | X^2+y^2=192 | | 3-r/3=-2 | | 4−z=6 | | 52(5/4-y)+28y=5 |

Equations solver categories