If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (X + 2)(x + k) = 2 + 3x Reorder the terms: (2 + X)(x + k) = 2 + 3x Reorder the terms: (2 + X)(k + x) = 2 + 3x Multiply (2 + X) * (k + x) (2(k + x) + X(k + x)) = 2 + 3x ((k * 2 + x * 2) + X(k + x)) = 2 + 3x ((2k + 2x) + X(k + x)) = 2 + 3x (2k + 2x + (k * X + x * X)) = 2 + 3x (2k + 2x + (kX + xX)) = 2 + 3x Reorder the terms: (2k + kX + 2x + xX) = 2 + 3x (2k + kX + 2x + xX) = 2 + 3x Solving 2k + kX + 2x + xX = 2 + 3x Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-2x' to each side of the equation. 2k + kX + 2x + -2x + xX = 2 + 3x + -2x Combine like terms: 2x + -2x = 0 2k + kX + 0 + xX = 2 + 3x + -2x 2k + kX + xX = 2 + 3x + -2x Combine like terms: 3x + -2x = 1x 2k + kX + xX = 2 + 1x Add '-1xX' to each side of the equation. 2k + kX + xX + -1xX = 2 + 1x + -1xX Combine like terms: xX + -1xX = 0 2k + kX + 0 = 2 + 1x + -1xX 2k + kX = 2 + 1x + -1xX Reorder the terms: -2 + 2k + kX + -1x + xX = 2 + 1x + -1xX + -2 + -1x + xX Reorder the terms: -2 + 2k + kX + -1x + xX = 2 + -2 + 1x + -1x + -1xX + xX Combine like terms: 2 + -2 = 0 -2 + 2k + kX + -1x + xX = 0 + 1x + -1x + -1xX + xX -2 + 2k + kX + -1x + xX = 1x + -1x + -1xX + xX Combine like terms: 1x + -1x = 0 -2 + 2k + kX + -1x + xX = 0 + -1xX + xX -2 + 2k + kX + -1x + xX = -1xX + xX Combine like terms: -1xX + xX = 0 -2 + 2k + kX + -1x + xX = 0 The solution to this equation could not be determined.
| (5-9/3)7)= | | 6x-(9x+6)=8-3x | | 2(2x+8)+9=3+2x | | 4(2x+2)-12=20 | | x^2+36x+3= | | 180-4x=3x | | 20x+18=12X+19 | | 3sin(x)-4cos(x)=3 | | x=(6x+4)+10x | | (6x+4)+10x= | | x+30=4x+50 | | 10x+20=60x-8 | | 3(3.00)+3(0.50)=d | | u-4.6=3.81 | | 16 = g3+ 13 | | 11=q/2-14 | | 97+x+3x=1158 | | 5y+3=5.5 | | 2(2x-1)=3(11-x) | | 3s+1=13 | | 6y-5(y-2)+2=8 | | X/16=7.75 | | M=430(1+.09) | | 2x-9y=22 | | (2x+25)(3x+10)= | | X+3a=9 | | 7//9x-4)=3x-10 | | 7x-2+14= | | 8-4(c-2)=12 | | 728+c=1205 | | 9x^3-9x+1=0 | | g(x)=5(-4)-5 |