(X+2)(x+2)+4x=192

Simple and best practice solution for (X+2)(x+2)+4x=192 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+2)(x+2)+4x=192 equation:



(X+2)(X+2)+4X=192
We move all terms to the left:
(X+2)(X+2)+4X-(192)=0
We add all the numbers together, and all the variables
4X+(X+2)(X+2)-192=0
We multiply parentheses ..
(+X^2+2X+2X+4)+4X-192=0
We get rid of parentheses
X^2+2X+2X+4X+4-192=0
We add all the numbers together, and all the variables
X^2+8X-188=0
a = 1; b = 8; c = -188;
Δ = b2-4ac
Δ = 82-4·1·(-188)
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{51}}{2*1}=\frac{-8-4\sqrt{51}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{51}}{2*1}=\frac{-8+4\sqrt{51}}{2} $

See similar equations:

| b/7=23 | | 16x-3+5x+2=72 | | F(x)=6x2+6x-1 | | 5+4(2x+3)=2x-3 | | 16+3k=4k | | x+2/2=5/6+x+3/3 | | 2/3y+6=2/3+6 | | -34=s/4 | | X/2=5x/6+1/9 | | 4m-7=18/2 | | 7+y=31/4 | | 3(x+4)=-(x-5) | | (3/5)w-(1/5)w+10=4 | | 4c=3c-10 | | (3/5)w-(1/5)+10=4 | | 4x-13+3x=7+7x-20 | | F(x)=-2x^+4x+1 | | 8x/9-1/9=23/9-4x-9 | | (3/5)w-(1/5)w+19=4 | | 1/x+5/x-9=0 | | 1,1x-0,9=0,4x-0,5 | | 2g-2=8/2g-3 | | x-13/3=-6 | | .3t+1.4=4.2-0.1t | | 4.9t^2+10t=3.5 | | 2z-30=2(z-15) | | 10+7m=3(2m+5)+m | | 9x-8x=-9 | | (1/2x)+7=(3/4x)-4 | | (5^k)^3=(^3÷5)^3 | | a•164363-10=10 | | -20-3p=10 |

Equations solver categories