If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X+1)(X+1)=104
We move all terms to the left:
(X+1)(X+1)-(104)=0
We multiply parentheses ..
(+X^2+X+X+1)-104=0
We get rid of parentheses
X^2+X+X+1-104=0
We add all the numbers together, and all the variables
X^2+2X-103=0
a = 1; b = 2; c = -103;
Δ = b2-4ac
Δ = 22-4·1·(-103)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{26}}{2*1}=\frac{-2-4\sqrt{26}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{26}}{2*1}=\frac{-2+4\sqrt{26}}{2} $
| 3x-6+30x=19-2x | | 24b-7=6b+11 | | 3(7+2x)=3x+6 | | ((a-7)/6)=(a-7)/15 | | 3(b+5)=66 | | 3(b+5)=51 | | 12x+50=10x+120 | | 9n^2+42n+35=0 | | 40(b+10)=1320 | | 40(b+10)=1120 | | (1+x)5=-30 | | 8•2+10x=8x | | 50(b+18)=1900 | | 50(b+18)=2900 | | 5+f2=13 | | 94-43=h | | 2(b+14)=78 | | 2(b+14)=40 | | (2×5)+c×c×c÷3=c×c×c÷(1^5+2)+10 | | n+3.5=-10. | | n+3.5=-10.0 | | 10x+2=6x-6 | | 71+h=90 | | 3^x+3^2×3^x+3^x/3=31/3 | | 3+10i=5i-18 | | 8a+6=-13(a+6) | | 3^x+3^x×3^2+3^×/3=31/3 | | (x+7)(x+7)=x^2 | | 3^x+3^(x+2)+3^(×-1)=31/3 | | x+(15x/100)=230 | | 3(b-6)=39 | | x+15x/100=230 |