If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9x-5)(9x+5)=0
We use the square of the difference formula
81x^2-25=0
a = 81; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·81·(-25)
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90}{2*81}=\frac{-90}{162} =-5/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90}{2*81}=\frac{90}{162} =5/9 $
| x+3*7=9*3 | | e–14=-4 | | 17c-16c-c+c=18 | | x+3(7)=9(3) | | 60x+5=5x+7 | | 8(j+-3)=4j+9j-14 | | 2q+5.4=12.6 | | 2a+3a-a=20 | | 12-3m=5 | | 4v-v-v+v+4v=14 | | 2z+6=2 | | -2+5n-2+1=5+3n | | 5v/8=35 | | 7/8=5/9uu= | | 2-c+2/10=c-1/5 | | -16k+7k+-8k+18k=17 | | x-8/9=3/2 | | 15g+20g-16g=-19 | | 2-(c+2)÷10=(c-1)÷5 | | 18u+2u+4u-14u-u=9 | | 16r−9r=14 | | 2-(c+2÷10)=(c-1÷5) | | 5h-h=20 | | 7u-3u=20 | | (25-4b)^3/2=729 | | 20/x=10/40 | | x2-16x+15=0 | | 5/6x+1/2=2/3x=4 | | 5x^2-480x+14400=0 | | 0.4t=0.3t+0.3 | | 5x^2-480x-14400=0 | | 0=-2^x |