If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9x-24)=(x+9)(6x-5)
We move all terms to the left:
(9x-24)-((x+9)(6x-5))=0
We get rid of parentheses
9x-((x+9)(6x-5))-24=0
We multiply parentheses ..
-((+6x^2-5x+54x-45))+9x-24=0
We calculate terms in parentheses: -((+6x^2-5x+54x-45)), so:We add all the numbers together, and all the variables
(+6x^2-5x+54x-45)
We get rid of parentheses
6x^2-5x+54x-45
We add all the numbers together, and all the variables
6x^2+49x-45
Back to the equation:
-(6x^2+49x-45)
9x-(6x^2+49x-45)-24=0
We get rid of parentheses
-6x^2+9x-49x+45-24=0
We add all the numbers together, and all the variables
-6x^2-40x+21=0
a = -6; b = -40; c = +21;
Δ = b2-4ac
Δ = -402-4·(-6)·21
Δ = 2104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2104}=\sqrt{4*526}=\sqrt{4}*\sqrt{526}=2\sqrt{526}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-2\sqrt{526}}{2*-6}=\frac{40-2\sqrt{526}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+2\sqrt{526}}{2*-6}=\frac{40+2\sqrt{526}}{-12} $
| 2m-3.6=7.6 | | 5=1/2a−3 | | -3x-6x+5x=-9 | | 5(2x-3)-3(3x+1)=2 | | |4n+8|-3=-13 | | (x+2)^2/5+(x-2)^2/5=16/3 | | (x-7)^2=-25 | | 3/5(4x-3)=27 | | 2m-3.6=-2 | | (x+2)2/5+(x-2)2/5=16/3 | | √x4=9 | | 7p+54=p-6 | | 4(2x-3)=5x+104 | | 2(x+5)-4(x-9)=-3 | | P=-3-4l-6 | | 5(n+7)=7-2(n-7) | | 2(x=5)-4(x-9)=-3 | | 3m+7=m-19 | | 2/3x+2/4=4+1/3x | | 5+(2)/(3)x=-x+20 | | 5r+8=13+3r | | 8x=173 | | 4(x-1)+6=18 | | 2(1/3x+1/4)=4+1/3x | | 4/3(2x-10)=16 | | 40x-70=286 | | 25-h=-6 | | X+3/4=2x/7 | | 7(x-2)=-34 | | -6+14x=8x-6(1-2x) | | 17-x=0.33333333333+15+6 | | 4(2x-10)=14 |