(9x+8)(-7x+9)+(9x+8)(2x-4)=0

Simple and best practice solution for (9x+8)(-7x+9)+(9x+8)(2x-4)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9x+8)(-7x+9)+(9x+8)(2x-4)=0 equation:



(9x+8)(-7x+9)+(9x+8)(2x-4)=0
We multiply parentheses ..
(-63x^2+81x-56x+72)+(9x+8)(2x-4)=0
We get rid of parentheses
-63x^2+81x-56x+(9x+8)(2x-4)+72=0
We multiply parentheses ..
-63x^2+(+18x^2-36x+16x-32)+81x-56x+72=0
We add all the numbers together, and all the variables
-63x^2+(+18x^2-36x+16x-32)+25x+72=0
We get rid of parentheses
-63x^2+18x^2-36x+16x+25x-32+72=0
We add all the numbers together, and all the variables
-45x^2+5x+40=0
a = -45; b = 5; c = +40;
Δ = b2-4ac
Δ = 52-4·(-45)·40
Δ = 7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7225}=85$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-85}{2*-45}=\frac{-90}{-90} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+85}{2*-45}=\frac{80}{-90} =-8/9 $

See similar equations:

| (8x-6)²-16=0 | | (8x−6)​2​​−16=0 | | -45²+53z=14 | | (-9z+2)(-5z-7)=0 | | -1,7*x=-5,1 | | 20n-14=46 | | 4×(2+n)=48n= | | s-35=108 | | c-36=91 | | -9+m=98 | | 13=n-55 | | 2x^+x-45=0 | | 12×n=96,n | | 12×n=96,n= | | 78-n=45n= | | 45-n=21n= | | n+15=30n= | | 25-n=19n= | | x-3/3+x=2 | | 23x4=100 | | 10^(3x+1)-10^(3x)=900 | | -95=l+54 | | 6x-30=2x50 | | D^2-7D+12y=0 | | 3(22x-4)=6(x+2) | | x-4=(2x-13)2 | | x-4=(2x-13)x2 | | 2x+3x-4+34=180 | | 100=0,25x | | 95=6x+47 | | 2b-10=3b-12 | | (2/3)x=(7/9) |

Equations solver categories