(90)-(x)=1/2(x)

Simple and best practice solution for (90)-(x)=1/2(x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (90)-(x)=1/2(x) equation:



(90)-(x)=1/2(x)
We move all terms to the left:
(90)-(x)-(1/2(x))=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-x-(+1/2x)+90=0
We add all the numbers together, and all the variables
-1x-(+1/2x)+90=0
We get rid of parentheses
-1x-1/2x+90=0
We multiply all the terms by the denominator
-1x*2x+90*2x-1=0
Wy multiply elements
-2x^2+180x-1=0
a = -2; b = 180; c = -1;
Δ = b2-4ac
Δ = 1802-4·(-2)·(-1)
Δ = 32392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32392}=\sqrt{4*8098}=\sqrt{4}*\sqrt{8098}=2\sqrt{8098}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-2\sqrt{8098}}{2*-2}=\frac{-180-2\sqrt{8098}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+2\sqrt{8098}}{2*-2}=\frac{-180+2\sqrt{8098}}{-4} $

See similar equations:

| -242=-11x | | -7x+4(x+3)=15 | | 5b+2=-13= | | -63=3(4n-1) | | -7x+4(x+3)=15 | | (x+24)=125 | | (180)-(x)=1/2(x) | | -10=x-12/3 | | x(40.5)=1 | | 80+53+x=180 | | 4(e-2)=2(e-9) | | B=7*(x-6) | | 2x(-14)-9=1 | | 7x-+0=-17 | | 7^x=8^2x-1 | | (180-x)=1/2(x) | | 66.66666667(50x-25)=75(44.44444444x+22.22222222) | | 62+50+x=180 | | 2(3p-3)-5(4p+2)=3-2(p+2) | | -37=-12+a | | -2(5x-3)=56 | | 11=f-2 | | 4(2h+5)=52 | | -6n-5(4+n)=-4n-34 | | -6x+2(x-5)=2 | | |2x+3|=|3x+1| | | 13=-6+n | | v-18=-46 | | (180−x)+(90−x)=210 | | -3(10-7x)=6(-x-5) | | 50=-10t+89 | | 2k-4k=18 |

Equations solver categories